Abstract
Disordered mitochondrial metabolism may play an important role in a number of idiopathic neurodegenerative disorders. The question of mitochondrial dysfunction is particularly attractive in the case of idiopathic Parkinson disease (PD), since Vyas et al. recognized in the 1980s that the parkinsonism-inducing compound N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine is a mitochondrial toxin. The unique genetic properties of mitochondria also make them worthy of consideration for a pathogenic role in PD, as well as in other late-onset, sporadic neurodegenerative disorders. Although affected persons occasionally do provide family histories that suggest Mendelian inheritance, the vast majority of the time these diseases appear sporadically. Because of unique features such as heteroplasmy, replicative segregation, and threshold effects, mitochondrial inheritance can allow for the apparent sporadic nature of these diseases.
Full Text
The Full Text of this article is available as a PDF (224.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beal M. F. Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 1995 Sep;38(3):357–366. doi: 10.1002/ana.410380304. [DOI] [PubMed] [Google Scholar]
- Benecke R., Strümper P., Weiss H. Electron transfer complexes I and IV of platelets are abnormal in Parkinson's disease but normal in Parkinson-plus syndromes. Brain. 1993 Dec;116(Pt 6):1451–1463. doi: 10.1093/brain/116.6.1451. [DOI] [PubMed] [Google Scholar]
- Burkhardt C., Kelly J. P., Lim Y. H., Filley C. M., Parker W. D., Jr Neuroleptic medications inhibit complex I of the electron transport chain. Ann Neurol. 1993 May;33(5):512–517. doi: 10.1002/ana.410330516. [DOI] [PubMed] [Google Scholar]
- Cassarino D. S., Fall C. P., Swerdlow R. H., Smith T. S., Halvorsen E. M., Miller S. W., Parks J. P., Parker W. D., Jr, Bennett J. P., Jr Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson's disease. Biochim Biophys Acta. 1997 Nov 28;1362(1):77–86. doi: 10.1016/s0925-4439(97)00070-7. [DOI] [PubMed] [Google Scholar]
- Damier P., Hirsch E. C., Zhang P., Agid Y., Javoy-Agid F. Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience. 1993 Jan;52(1):1–6. doi: 10.1016/0306-4522(93)90175-f. [DOI] [PubMed] [Google Scholar]
- Edland S. D., Silverman J. M., Peskind E. R., Tsuang D., Wijsman E., Morris J. C. Increased risk of dementia in mothers of Alzheimer's disease cases: evidence for maternal inheritance. Neurology. 1996 Jul;47(1):254–256. doi: 10.1212/wnl.47.1.254. [DOI] [PubMed] [Google Scholar]
- Haas R. H., Nasirian F., Nakano K., Ward D., Pay M., Hill R., Shults C. W. Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's disease. Ann Neurol. 1995 Jun;37(6):714–722. doi: 10.1002/ana.410370604. [DOI] [PubMed] [Google Scholar]
- Ikebe S., Tanaka M., Ozawa T. Point mutations of mitochondrial genome in Parkinson's disease. Brain Res Mol Brain Res. 1995 Feb;28(2):281–295. doi: 10.1016/0169-328x(94)00209-w. [DOI] [PubMed] [Google Scholar]
- Javitch J. A., D'Amato R. J., Strittmatter S. M., Snyder S. H. Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2173–2177. doi: 10.1073/pnas.82.7.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalra J., Rajput A. H., Mantha S. V., Prasad K. Serum antioxidant enzyme activity in Parkinson's disease. Mol Cell Biochem. 1992 Mar 25;110(2):165–168. doi: 10.1007/BF02454194. [DOI] [PubMed] [Google Scholar]
- Kish S. J., Bergeron C., Rajput A., Dozic S., Mastrogiacomo F., Chang L. J., Wilson J. M., DiStefano L. M., Nobrega J. N. Brain cytochrome oxidase in Alzheimer's disease. J Neurochem. 1992 Aug;59(2):776–779. doi: 10.1111/j.1471-4159.1992.tb09439.x. [DOI] [PubMed] [Google Scholar]
- Krige D., Carroll M. T., Cooper J. M., Marsden C. D., Schapira A. H. Platelet mitochondrial function in Parkinson's disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol. 1992 Dec;32(6):782–788. doi: 10.1002/ana.410320612. [DOI] [PubMed] [Google Scholar]
- Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44–51. doi: 10.1016/s0167-5699(97)80014-x. [DOI] [PubMed] [Google Scholar]
- Kösel S., Lücking C. B., Egensperger R., Mehraein P., Graeber M. B. Mitochondrial NADH dehydrogenase and CYP2D6 genotypes in Lewy-body parkinsonism. J Neurosci Res. 1996 Apr 15;44(2):174–183. doi: 10.1002/(SICI)1097-4547(19960415)44:2<174::AID-JNR10>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Lazzarini A. M., Myers R. H., Zimmerman T. R., Jr, Mark M. H., Golbe L. I., Sage J. I., Johnson W. G., Duvoisin R. C. A clinical genetic study of Parkinson's disease: evidence for dominant transmission. Neurology. 1994 Mar;44(3 Pt 1):499–506. doi: 10.1212/wnl.44.3_part_1.499. [DOI] [PubMed] [Google Scholar]
- Marsden C. D. Parkinson's disease in twins. J Neurol Neurosurg Psychiatry. 1987 Jan;50(1):105–106. doi: 10.1136/jnnp.50.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marttila R. J., Kaprio J., Koskenvuo M., Rinne U. K. Parkinson's disease in a nationwide twin cohort. Neurology. 1988 Aug;38(8):1217–1219. doi: 10.1212/wnl.38.8.1217. [DOI] [PubMed] [Google Scholar]
- Marttila R. J., Lorentz H., Rinne U. K. Oxygen toxicity protecting enzymes in Parkinson's disease. Increase of superoxide dismutase-like activity in the substantia nigra and basal nucleus. J Neurol Sci. 1988 Sep;86(2-3):321–331. doi: 10.1016/0022-510x(88)90108-6. [DOI] [PubMed] [Google Scholar]
- Miller S. W., Trimmer P. A., Parker W. D., Jr, Davis R. E. Creation and characterization of mitochondrial DNA-depleted cell lines with "neuronal-like" properties. J Neurochem. 1996 Nov;67(5):1897–1907. doi: 10.1046/j.1471-4159.1996.67051897.x. [DOI] [PubMed] [Google Scholar]
- Mizuno Y., Ohta S., Tanaka M., Takamiya S., Suzuki K., Sato T., Oya H., Ozawa T., Kagawa Y. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun. 1989 Sep 29;163(3):1450–1455. doi: 10.1016/0006-291x(89)91141-8. [DOI] [PubMed] [Google Scholar]
- Morrison P. J., Godwin-Austen R. B., Raeburn J. A. Familial autosomal dominant dopa responsive Parkinson's disease in three living generations showing extreme anticipation and childhood onset. J Med Genet. 1996 Jun;33(6):504–506. doi: 10.1136/jmg.33.6.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mytilineou C., Werner P., Molinari S., Di Rocco A., Cohen G., Yahr M. D. Impaired oxidative decarboxylation of pyruvate in fibroblasts from patients with Parkinson's disease. J Neural Transm Park Dis Dement Sect. 1994;8(3):223–228. doi: 10.1007/BF02260943. [DOI] [PubMed] [Google Scholar]
- Parker W. D., Jr, Boyson S. J., Parks J. K. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol. 1989 Dec;26(6):719–723. doi: 10.1002/ana.410260606. [DOI] [PubMed] [Google Scholar]
- Parker W. D., Jr, Filley C. M., Parks J. K. Cytochrome oxidase deficiency in Alzheimer's disease. Neurology. 1990 Aug;40(8):1302–1303. doi: 10.1212/wnl.40.8.1302. [DOI] [PubMed] [Google Scholar]
- Parker W. D., Jr, Oley C. A., Parks J. K. A defect in mitochondrial electron-transport activity (NADH-coenzyme Q oxidoreductase) in Leber's hereditary optic neuropathy. N Engl J Med. 1989 May 18;320(20):1331–1333. doi: 10.1056/NEJM198905183202007. [DOI] [PubMed] [Google Scholar]
- Polymeropoulos M. H., Lavedan C., Leroy E., Ide S. E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997 Jun 27;276(5321):2045–2047. doi: 10.1126/science.276.5321.2045. [DOI] [PubMed] [Google Scholar]
- Saggu H., Cooksey J., Dexter D., Wells F. R., Lees A., Jenner P., Marsden C. D. A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. J Neurochem. 1989 Sep;53(3):692–697. doi: 10.1111/j.1471-4159.1989.tb11759.x. [DOI] [PubMed] [Google Scholar]
- Schapira A. H., Cooper J. M., Dexter D., Jenner P., Clark J. B., Marsden C. D. Mitochondrial complex I deficiency in Parkinson's disease. Lancet. 1989 Jun 3;1(8649):1269–1269. doi: 10.1016/s0140-6736(89)92366-0. [DOI] [PubMed] [Google Scholar]
- Sheehan J. P., Swerdlow R. H., Miller S. W., Davis R. E., Parks J. K., Parker W. D., Tuttle J. B. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease. J Neurosci. 1997 Jun 15;17(12):4612–4622. doi: 10.1523/JNEUROSCI.17-12-04612.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheehan J. P., Swerdlow R. H., Parker W. D., Miller S. W., Davis R. E., Tuttle J. B. Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson's disease. J Neurochem. 1997 Mar;68(3):1221–1233. doi: 10.1046/j.1471-4159.1997.68031221.x. [DOI] [PubMed] [Google Scholar]
- Shoffner J. M., Brown M. D., Torroni A., Lott M. T., Cabell M. F., Mirra S. S., Beal M. F., Yang C. C., Gearing M., Salvo R. Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics. 1993 Jul;17(1):171–184. doi: 10.1006/geno.1993.1299. [DOI] [PubMed] [Google Scholar]
- Shoffner J. M., Watts R. L., Juncos J. L., Torroni A., Wallace D. C. Mitochondrial oxidative phosphorylation defects in Parkinson's disease. Ann Neurol. 1991 Sep;30(3):332–339. doi: 10.1002/ana.410300304. [DOI] [PubMed] [Google Scholar]
- Swerdlow R. H., Parks J. K., Cassarino D. S., Maguire D. J., Maguire R. S., Bennett J. P., Jr, Davis R. E., Parker W. D., Jr Cybrids in Alzheimer's disease: a cellular model of the disease? Neurology. 1997 Oct;49(4):918–925. doi: 10.1212/wnl.49.4.918. [DOI] [PubMed] [Google Scholar]
- Swerdlow R. H., Parks J. K., Miller S. W., Tuttle J. B., Trimmer P. A., Sheehan J. P., Bennett J. P., Jr, Davis R. E., Parker W. D., Jr Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol. 1996 Oct;40(4):663–671. doi: 10.1002/ana.410400417. [DOI] [PubMed] [Google Scholar]
- Vyas I., Heikkila R. E., Nicklas W. J. Studies on the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: inhibition of NAD-linked substrate oxidation by its metabolite, 1-methyl-4-phenylpyridinium. J Neurochem. 1986 May;46(5):1501–1507. doi: 10.1111/j.1471-4159.1986.tb01768.x. [DOI] [PubMed] [Google Scholar]
- Ward C. D., Duvoisin R. C., Ince S. E., Nutt J. D., Eldridge R., Calne D. B. Parkinson's disease in 65 pairs of twins and in a set of quadruplets. Neurology. 1983 Jul;33(7):815–824. doi: 10.1212/wnl.33.7.815. [DOI] [PubMed] [Google Scholar]
- Wooten G. F., Currie L. J., Bennett J. P., Harrison M. B., Trugman J. M., Parker W. D., Jr Maternal inheritance in Parkinson's disease. Ann Neurol. 1997 Feb;41(2):265–268. doi: 10.1002/ana.410410218. [DOI] [PubMed] [Google Scholar]
- Yoshino H., Nakagawa-Hattori Y., Kondo T., Mizuno Y. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson's disease. J Neural Transm Park Dis Dement Sect. 1992;4(1):27–34. doi: 10.1007/BF02257619. [DOI] [PubMed] [Google Scholar]
- Young W. I., Martin W. E., Anderson V. E. The distribution of ancestral secondary cases in Parkinson's disease. Clin Genet. 1977 Mar;11(3):189–192. doi: 10.1111/j.1399-0004.1977.tb01298.x. [DOI] [PubMed] [Google Scholar]