Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 May;62(5):1023–1033. doi: 10.1086/301827

Human meiotic recombination products revealed by sequencing a hotspot for homologous strand exchange in multiple HNPP deletion patients.

L T Reiter 1, P J Hastings 1, E Nelis 1, P De Jonghe 1, C Van Broeckhoven 1, J R Lupski 1
PMCID: PMC1377084  PMID: 9545397

Abstract

The HNPP (hereditary neuropathy with liability to pressure palsies) deletion and CMT1A (Charcot-Marie-Tooth disease type 1A) duplication are the reciprocal products of homologous recombination events between misaligned flanking CMT1A-REP repeats on chromosome 17p11. 2-p12. A 1.7-kb hotspot for homologous recombination was previously identified wherein the relative risk of an exchange event is 50 times higher than in the surrounding 98.7% identical sequence shared by the CMT1A-REPs. To refine the region of exchange further, we designed a PCR strategy to amplify the recombinant CMT1A-REP from HNPP patients as well as the proximal and distal CMT1A-REPs from control individuals. By comparing the sequences across recombinant CMT1A-REPs to that of the proximal and distal CMT1A-REPs, the exchange was mapped to a 557-bp region within the previously identified 1.7-kb hotspot in 21 of 23 unrelated HNPP deletion patients. Two patients had recombined sequences suggesting an exchange event closer to the mariner-like element previously identified near the hotspot. Five individuals also had interspersed patches of proximal or distal repeat specific DNA sequence indicating potential gene conversion during the exchange of genetic material. Our studies provide a direct observation of human meiotic recombination products. These results are consistent with the hypothesis that minimum efficient processing segments, which have been characterized in Escherichia coli, yeast, and cultured mammalian cells, may be required for efficient homologous meiotic recombination in humans.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akgün E., Zahn J., Baumes S., Brown G., Liang F., Romanienko P. J., Lewis S., Jasin M. Palindrome resolution and recombination in the mammalian germ line. Mol Cell Biol. 1997 Sep;17(9):5559–5570. doi: 10.1128/mcb.17.9.5559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chance P. F., Abbas N., Lensch M. W., Pentao L., Roa B. B., Patel P. I., Lupski J. R. Two autosomal dominant neuropathies result from reciprocal DNA duplication/deletion of a region on chromosome 17. Hum Mol Genet. 1994 Feb;3(2):223–228. doi: 10.1093/hmg/3.2.223. [DOI] [PubMed] [Google Scholar]
  3. Chance P. F., Alderson M. K., Leppig K. A., Lensch M. W., Matsunami N., Smith B., Swanson P. D., Odelberg S. J., Disteche C. M., Bird T. D. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell. 1993 Jan 15;72(1):143–151. doi: 10.1016/0092-8674(93)90058-x. [DOI] [PubMed] [Google Scholar]
  4. Gueiros-Filho F. J., Beverley S. M. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science. 1997 Jun 13;276(5319):1716–1719. doi: 10.1126/science.276.5319.1716. [DOI] [PubMed] [Google Scholar]
  5. Hartl D. L., Lozovskaya E. R., Nurminsky D. I., Lohe A. R. What restricts the activity of mariner-like transposable elements. Trends Genet. 1997 May;13(5):197–201. doi: 10.1016/s0168-9525(97)01087-1. [DOI] [PubMed] [Google Scholar]
  6. Hoogendijk J. E., Hensels G. W., Gabreëls-Festen A. A., Gabreëls F. J., Janssen E. A., de Jonghe P., Martin J. J., van Broeckhoven C., Valentijn L. J., Baas F. De-novo mutation in hereditary motor and sensory neuropathy type I. Lancet. 1992 May 2;339(8801):1081–1082. doi: 10.1016/0140-6736(92)90668-s. [DOI] [PubMed] [Google Scholar]
  7. Ivics Z., Izsvak Z., Minter A., Hackett P. B. Identification of functional domains and evolution of Tc1-like transposable elements. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5008–5013. doi: 10.1073/pnas.93.10.5008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jinks-Robertson S., Michelitch M., Ramcharan S. Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Jul;13(7):3937–3950. doi: 10.1128/mcb.13.7.3937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keyeux G., Lefranc G., Lefranc M. P. A multigene deletion in the human IGH constant region locus involves highly homologous hot spots of recombination. Genomics. 1989 Oct;5(3):431–441. doi: 10.1016/0888-7543(89)90006-2. [DOI] [PubMed] [Google Scholar]
  10. Kiyosawa H., Lensch M. W., Chance P. F. Analysis of the CMT1A-REP repeat: mapping crossover breakpoints in CMT1A and HNPP. Hum Mol Genet. 1995 Dec;4(12):2327–2334. doi: 10.1093/hmg/4.12.2327. [DOI] [PubMed] [Google Scholar]
  11. Lagerstedt K., Karsten S. L., Carlberg B. M., Kleijer W. J., Tönnesen T., Pettersson U., Bondeson M. L. Double-strand breaks may initiate the inversion mutation causing the Hunter syndrome. Hum Mol Genet. 1997 Apr;6(4):627–633. doi: 10.1093/hmg/6.4.627. [DOI] [PubMed] [Google Scholar]
  12. Lampe D. J., Churchill M. E., Robertson H. M. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 1996 Oct 1;15(19):5470–5479. [PMC free article] [PubMed] [Google Scholar]
  13. Lehrman M. A., Russell D. W., Goldstein J. L., Brown M. S. Alu-Alu recombination deletes splice acceptor sites and produces secreted low density lipoprotein receptor in a subject with familial hypercholesterolemia. J Biol Chem. 1987 Mar 5;262(7):3354–3361. [PubMed] [Google Scholar]
  14. Lichten M., Goldman A. S. Meiotic recombination hotspots. Annu Rev Genet. 1995;29:423–444. doi: 10.1146/annurev.ge.29.120195.002231. [DOI] [PubMed] [Google Scholar]
  15. Liskay R. M., Letsou A., Stachelek J. L. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 1987 Jan;115(1):161–167. doi: 10.1093/genetics/115.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Liskay R. M., Stachelek J. L. Information transfer between duplicated chromosomal sequences in mammalian cells involves contiguous regions of DNA. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1802–1806. doi: 10.1073/pnas.83.6.1802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lopes J., LeGuern E., Gouider R., Tardieu S., Abbas N., Birouk N., Gugenheim M., Bouche P., Agid Y., Brice A. Recombination hot spot in a 3.2-kb region of the Charcot-Marie-Tooth type 1A repeat sequences: new tools for molecular diagnosis of hereditary neuropathy with liability to pressure palsies and of Charcot-Marie-Tooth type 1A. French CMT Collaborative Research Group. Am J Hum Genet. 1996 Jun;58(6):1223–1230. [PMC free article] [PubMed] [Google Scholar]
  18. Lopes J., Ravisé N., Vandenberghe A., Palau F., Ionasescu V., Mayer M., Lévy N., Wood N., Tachi N., Bouche P. Fine mapping of de novo CMT1A and HNPP rearrangements within CMT1A-REPs evidences two distinct sex-dependent mechanisms and candidate sequences involved in recombination. Hum Mol Genet. 1998 Jan;7(1):141–148. doi: 10.1093/hmg/7.1.141. [DOI] [PubMed] [Google Scholar]
  19. Lupski J. R. Charcot-Marie-Tooth disease: a gene-dosage effect. Hosp Pract (1995) 1997 May 15;32(5):83-4, 89-91, 94-5 passim. doi: 10.1080/21548331.1997.11443485. [DOI] [PubMed] [Google Scholar]
  20. Metzenberg A. B., Wurzer G., Huisman T. H., Smithies O. Homology requirements for unequal crossing over in humans. Genetics. 1991 May;128(1):143–161. doi: 10.1093/genetics/128.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murakami T., Garcia C. A., Reiter L. T., Lupski J. R. Charcot-Marie-Tooth disease and related inherited neuropathies. Medicine (Baltimore) 1996 Sep;75(5):233–250. doi: 10.1097/00005792-199609000-00001. [DOI] [PubMed] [Google Scholar]
  22. Nelis E., Van Broeckhoven C., De Jonghe P., Löfgren A., Vandenberghe A., Latour P., Le Guern E., Brice A., Mostacciuolo M. L., Schiavon F. Estimation of the mutation frequencies in Charcot-Marie-Tooth disease type 1 and hereditary neuropathy with liability to pressure palsies: a European collaborative study. Eur J Hum Genet. 1996;4(1):25–33. doi: 10.1159/000472166. [DOI] [PubMed] [Google Scholar]
  23. Palau F., Löfgren A., De Jonghe P., Bort S., Nelis E., Sevilla T., Martin J. J., Vilchez J., Prieto F., Van Broeckhoven C. Origin of the de novo duplication in Charcot-Marie-Tooth disease type 1A: unequal nonsister chromatid exchange during spermatogenesis. Hum Mol Genet. 1993 Dec;2(12):2031–2035. doi: 10.1093/hmg/2.12.2031. [DOI] [PubMed] [Google Scholar]
  24. Pentao L., Wise C. A., Chinault A. C., Patel P. I., Lupski J. R. Charcot-Marie-Tooth type 1A duplication appears to arise from recombination at repeat sequences flanking the 1.5 Mb monomer unit. Nat Genet. 1992 Dec;2(4):292–300. doi: 10.1038/ng1292-292. [DOI] [PubMed] [Google Scholar]
  25. Raeymaekers P., Timmerman V., Nelis E., De Jonghe P., Hoogendijk J. E., Baas F., Barker D. F., Martin J. J., De Visser M., Bolhuis P. A. Duplication in chromosome 17p11.2 in Charcot-Marie-Tooth neuropathy type 1a (CMT 1a). The HMSN Collaborative Research Group. Neuromuscul Disord. 1991;1(2):93–97. doi: 10.1016/0960-8966(91)90055-w. [DOI] [PubMed] [Google Scholar]
  26. Ray A., Siddiqi I., Kolodkin A. L., Stahl F. W. Intra-chromosomal gene conversion induced by a DNA double-strand break in Saccharomyces cerevisiae. J Mol Biol. 1988 May 20;201(2):247–260. doi: 10.1016/0022-2836(88)90136-2. [DOI] [PubMed] [Google Scholar]
  27. Reiter L. T., Murakami T., Koeuth T., Gibbs R. A., Lupski J. R. The human COX10 gene is disrupted during homologous recombination between the 24 kb proximal and distal CMT1A-REPs. Hum Mol Genet. 1997 Sep;6(9):1595–1603. doi: 10.1093/hmg/6.9.1595. [DOI] [PubMed] [Google Scholar]
  28. Reiter L. T., Murakami T., Koeuth T., Pentao L., Muzny D. M., Gibbs R. A., Lupski J. R. A recombination hotspot responsible for two inherited peripheral neuropathies is located near a mariner transposon-like element. Nat Genet. 1996 Mar;12(3):288–297. doi: 10.1038/ng0396-288. [DOI] [PubMed] [Google Scholar]
  29. Robertson H. M. The mariner transposable element is widespread in insects. Nature. 1993 Mar 18;362(6417):241–245. doi: 10.1038/362241a0. [DOI] [PubMed] [Google Scholar]
  30. Rüdiger N. S., Hansen P. S., Jørgensen M., Faergeman O., Bolund L., Gregersen N. Repetitive sequences involved in the recombination leading to deletion of exon 5 of the low-density-lipoprotein receptor gene in a patient with familial hypercholesterolemia. Eur J Biochem. 1991 May 23;198(1):107–111. doi: 10.1111/j.1432-1033.1991.tb15992.x. [DOI] [PubMed] [Google Scholar]
  31. Shen P., Huang H. V. Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics. 1986 Mar;112(3):441–457. doi: 10.1093/genetics/112.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith R. F., Wiese B. A., Wojzynski M. K., Davison D. B., Worley K. C. BCM Search Launcher--an integrated interface to molecular biology data base search and analysis services available on the World Wide Web. Genome Res. 1996 May;6(5):454–462. doi: 10.1101/gr.6.5.454. [DOI] [PubMed] [Google Scholar]
  33. Sobell H. M. Molecular mechanism for genetic recombination. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2483–2487. doi: 10.1073/pnas.69.9.2483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stahl F., Myers R. Old and new concepts for the role of chi in bacterial recombination. J Hered. 1995 Sep-Oct;86(5):327–329. doi: 10.1093/oxfordjournals.jhered.a111599. [DOI] [PubMed] [Google Scholar]
  35. Sugawara N., Haber J. E. Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol. 1992 Feb;12(2):563–575. doi: 10.1128/mcb.12.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Timmerman V., Rautenstrauss B., Reiter L. T., Koeuth T., Löfgren A., Liehr T., Nelis E., Bathke K. D., De Jonghe P., Grehl H. Detection of the CMT1A/HNPP recombination hotspot in unrelated patients of European descent. J Med Genet. 1997 Jan;34(1):43–49. doi: 10.1136/jmg.34.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vulić M., Dionisio F., Taddei F., Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9763–9767. doi: 10.1073/pnas.94.18.9763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Waldman A. S., Liskay R. M. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol. 1988 Dec;8(12):5350–5357. doi: 10.1128/mcb.8.12.5350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wise C. A., Garcia C. A., Davis S. N., Heju Z., Pentao L., Patel P. I., Lupski J. R. Molecular analyses of unrelated Charcot-Marie-Tooth (CMT) disease patients suggest a high frequency of the CMTIA duplication. Am J Hum Genet. 1993 Oct;53(4):853–863. [PMC free article] [PubMed] [Google Scholar]
  40. Yamamoto M., Yasuda T., Hayasaka K., Ohnishi A., Yoshikawa H., Yanagihara T., Ikegami T., Yamamoto T., Ohashi H., Nishimura T. Locations of crossover breakpoints within the CMT1A-REP repeat in Japanese patients with CMT1A and HNPP. Hum Genet. 1997 Feb;99(2):151–154. doi: 10.1007/s004390050330. [DOI] [PubMed] [Google Scholar]
  41. Yen P. H., Li X. M., Tsai S. P., Johnson C., Mohandas T., Shapiro L. J. Frequent deletions of the human X chromosome distal short arm result from recombination between low copy repetitive elements. Cell. 1990 May 18;61(4):603–610. doi: 10.1016/0092-8674(90)90472-q. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES