Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Jun;62(6):1425–1438. doi: 10.1086/301862

Evidence for autosomal dominant inheritance of prostate cancer.

D J Schaid 1, S K McDonnell 1, M L Blute 1, S N Thibodeau 1
PMCID: PMC1377141  PMID: 9585590

Abstract

A family-history cancer survey was conducted on 5,486 men who underwent a radical prostatectomy, for clinically localized prostate cancer, in the Department of Urology at the Mayo Clinic during 1966-95; 4,288 men responded to the survey. Complex segregation analysis was performed to assess the genetic basis of age at diagnosis and the familial clustering of prostate cancer. For the total group, no single-gene model of inheritance clearly explained familial clustering of disease, which could be partly explained by lack of Hardy-Weinberg equilibrium, with an excess of homozygotes. After accounting for deviations from Hardy-Weinberg equilibrium, the best-fitting model that explained the familial aggregation and age at diagnosis was a rare autosomal dominant susceptibility gene, and this model fitted best when probands were diagnosed at <60 years of age. The model predicts that the frequency of the susceptibility gene in the population is .006 and that the risk of prostate cancer by age 85 years is 89% among carriers of the gene and 3% among noncarriers. A strength of our study is its large size, such that genetic models could be fitted within strata defined by the age of the proband. Although the autosomal dominant model was consistently the best model, the parameter estimates differed somewhat (P=.03) across the different age groups, suggesting genetic heterogeneity. Additional evidence that the hereditary basis of prostate cancer is likely to be genetically complex was provided by the following: (1) there was a significantly elevated age-adjusted risk of prostate cancer among brothers of probands, compared with their fathers (relative risk 1.5 [95% confidence interval 1.4-1.7]); (2) the autosomal dominant model predicted an excess of homozygotes, over that predicted by Hardy-Weinberg equilibrium; and (3) the model-predicted risk of prostate cancer among relatives was inadequate when probands were diagnosed at age >=70 years.

Full Text

The Full Text of this article is available as a PDF (519.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlbom A., Lichtenstein P., Malmström H., Feychting M., Hemminki K., Pedersen N. L. Cancer in twins: genetic and nongenetic familial risk factors. J Natl Cancer Inst. 1997 Feb 19;89(4):287–293. doi: 10.1093/jnci/89.4.287. [DOI] [PubMed] [Google Scholar]
  2. Bondy M. L., Strom S. S., Colopy M. W., Brown B. W., Strong L. C. Accuracy of family history of cancer obtained through interviews with relatives of patients with childhood sarcoma. J Clin Epidemiol. 1994 Jan;47(1):89–96. doi: 10.1016/0895-4356(94)90037-x. [DOI] [PubMed] [Google Scholar]
  3. Bonney G. E. Regressive logistic models for familial disease and other binary traits. Biometrics. 1986 Sep;42(3):611–625. [PubMed] [Google Scholar]
  4. Carter B. S., Beaty T. H., Steinberg G. D., Childs B., Walsh P. C. Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3367–3371. doi: 10.1073/pnas.89.8.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carter B. S., Bova G. S., Beaty T. H., Steinberg G. D., Childs B., Isaacs W. B., Walsh P. C. Hereditary prostate cancer: epidemiologic and clinical features. J Urol. 1993 Sep;150(3):797–802. doi: 10.1016/s0022-5347(17)35617-3. [DOI] [PubMed] [Google Scholar]
  6. Carter B. S., Carter H. B., Isaacs J. T. Epidemiologic evidence regarding predisposing factors to prostate cancer. Prostate. 1990;16(3):187–197. doi: 10.1002/pros.2990160302. [DOI] [PubMed] [Google Scholar]
  7. Cooney K. A., McCarthy J. D., Lange E., Huang L., Miesfeldt S., Montie J. E., Oesterling J. E., Sandler H. M., Lange K. Prostate cancer susceptibility locus on chromosome 1q: a confirmatory study. J Natl Cancer Inst. 1997 Jul 2;89(13):955–959. doi: 10.1093/jnci/89.13.955. [DOI] [PubMed] [Google Scholar]
  8. Easton D. F., Bishop D. T., Ford D., Crockford G. P. Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1993 Apr;52(4):678–701. [PMC free article] [PubMed] [Google Scholar]
  9. Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
  10. Go R. C., King M. C., Bailey-Wilson J., Elston R. C., Lynch H. T. Genetic epidemiology of breast cancer and associated cancers in high-risk families. I. Segregation analysis. J Natl Cancer Inst. 1983 Sep;71(3):455–461. [PubMed] [Google Scholar]
  11. Goldgar D. E., Easton D. F., Cannon-Albright L. A., Skolnick M. H. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994 Nov 2;86(21):1600–1608. doi: 10.1093/jnci/86.21.1600. [DOI] [PubMed] [Google Scholar]
  12. Grönberg H., Damber L., Damber J. E., Iselius L. Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol. 1997 Oct 1;146(7):552–557. doi: 10.1093/oxfordjournals.aje.a009313. [DOI] [PubMed] [Google Scholar]
  13. Grönberg H., Isaacs S. D., Smith J. R., Carpten J. D., Bova G. S., Freije D., Xu J., Meyers D. A., Collins F. S., Trent J. M. Characteristics of prostate cancer in families potentially linked to the hereditary prostate cancer 1 (HPC1) locus. JAMA. 1997 Oct 15;278(15):1251–1255. doi: 10.1001/jama.1997.03550150055035. [DOI] [PubMed] [Google Scholar]
  14. Jacobsen S. J., Katusic S. K., Bergstralh E. J., Oesterling J. E., Ohrt D., Klee G. G., Chute C. G., Lieber M. M. Incidence of prostate cancer diagnosis in the eras before and after serum prostate-specific antigen testing. JAMA. 1995 Nov 8;274(18):1445–1449. [PubMed] [Google Scholar]
  15. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  16. Lalouel J. M., Rao D. C., Morton N. E., Elston R. C. A unified model for complex segregation analysis. Am J Hum Genet. 1983 Sep;35(5):816–826. [PMC free article] [PubMed] [Google Scholar]
  17. Love R. R., Evans A. M., Josten D. M. The accuracy of patient reports of a family history of cancer. J Chronic Dis. 1985;38(4):289–293. doi: 10.1016/0021-9681(85)90074-8. [DOI] [PubMed] [Google Scholar]
  18. McIndoe R. A., Stanford J. L., Gibbs M., Jarvik G. P., Brandzel S., Neal C. L., Li S., Gammack J. T., Gay A. A., Goode E. L. Linkage analysis of 49 high-risk families does not support a common familial prostate cancer-susceptibility gene at 1q24-25. Am J Hum Genet. 1997 Aug;61(2):347–353. doi: 10.1086/514853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Meikle A. W., Stanish W. M. Familial prostatic cancer risk and low testosterone. J Clin Endocrinol Metab. 1982 Jun;54(6):1104–1108. doi: 10.1210/jcem-54-6-1104. [DOI] [PubMed] [Google Scholar]
  20. Monroe K. R., Yu M. C., Kolonel L. N., Coetzee G. A., Wilkens L. R., Ross R. K., Henderson B. E. Evidence of an X-linked or recessive genetic component to prostate cancer risk. Nat Med. 1995 Aug;1(8):827–829. doi: 10.1038/nm0895-827. [DOI] [PubMed] [Google Scholar]
  21. Parker S. L., Tong T., Bolden S., Wingo P. A. Cancer statistics, 1997. CA Cancer J Clin. 1997 Jan-Feb;47(1):5–27. doi: 10.3322/canjclin.47.1.5. [DOI] [PubMed] [Google Scholar]
  22. Smith J. R., Freije D., Carpten J. D., Grönberg H., Xu J., Isaacs S. D., Brownstein M. J., Bova G. S., Guo H., Bujnovszky P. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science. 1996 Nov 22;274(5291):1371–1374. doi: 10.1126/science.274.5291.1371. [DOI] [PubMed] [Google Scholar]
  23. Spitz M. R., Currier R. D., Fueger J. J., Babaian R. J., Newell G. R. Familial patterns of prostate cancer: a case-control analysis. J Urol. 1991 Nov;146(5):1305–1307. doi: 10.1016/s0022-5347(17)38074-6. [DOI] [PubMed] [Google Scholar]
  24. Steinberg G. D., Carter B. S., Beaty T. H., Childs B., Walsh P. C. Family history and the risk of prostate cancer. Prostate. 1990;17(4):337–347. doi: 10.1002/pros.2990170409. [DOI] [PubMed] [Google Scholar]
  25. WOOLF C. M. An investigation of the familial aspects of carcinoma of the prostate. Cancer. 1960 Jul-Aug;13:739–744. doi: 10.1002/1097-0142(196007/08)13:4<739::aid-cncr2820130414>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  26. Whittemore A. S., Wu A. H., Kolonel L. N., John E. M., Gallagher R. P., Howe G. R., West D. W., Teh C. Z., Stamey T. Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol. 1995 Apr 15;141(8):732–740. doi: 10.1093/oxfordjournals.aje.a117495. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES