Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Jun;62(6):1516–1524. doi: 10.1086/301871

Missense mutations in disease genes: a Bayesian approach to evaluate causality.

G M Petersen 1, G Parmigiani 1, D Thomas 1
PMCID: PMC1377150  PMID: 9585599

Abstract

The problem of interpreting missense mutations of disease-causing genes is an increasingly important one. Because these point mutations result in alteration of only a single amino acid of the protein product, it is often unclear whether this change alone is sufficient to cause disease. We propose a Bayesian approach that utilizes genetic information on affected relatives in families ascertained through known missense-mutation carriers. This method is useful in evaluating known disease genes for common disease phenotypes, such as breast cancer or colorectal cancer. The posterior probability that a missense mutation is disease causing is conditioned on the relationship of the relatives to the proband, the population frequency of the mutation, and the phenocopy rate of the disease. The approach is demonstrated in two cancer data sets: BRCA1 R841W and APC I1307K. In both examples, this method helps establish that these mutations are likely to be disease causing, with Bayes factors in favor of causality of 5.09 and 66.97, respectively, and posterior probabilities of .836 and .985. We also develop a simple approximation for rare alleles and consider the case of unknown penetrance and allele frequency.

Full Text

The Full Text of this article is available as a PDF (384.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aragaki C. C., Greenland S., Probst-Hensch N., Haile R. W. Hierarchical modeling of gene-environment interactions: estimating NAT2 genotype-specific dietary effects on adenomatous polyps. Cancer Epidemiol Biomarkers Prev. 1997 May;6(5):307–314. [PubMed] [Google Scholar]
  2. Athma P., Rappaport R., Swift M. Molecular genotyping shows that ataxia-telangiectasia heterozygotes are predisposed to breast cancer. Cancer Genet Cytogenet. 1996 Dec;92(2):130–134. doi: 10.1016/s0165-4608(96)00328-7. [DOI] [PubMed] [Google Scholar]
  3. Barker D. F., Almeida E. R., Casey G., Fain P. R., Liao S. Y., Masunaka I., Noble B., Kurosaki T., Anton-Culver H. BRCA1 R841W: a strong candidate for a common mutation with moderate phenotype. Genet Epidemiol. 1996;13(6):595–604. doi: 10.1002/(SICI)1098-2272(1996)13:6<595::AID-GEPI5>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  4. Fearon E. R. Human cancer syndromes: clues to the origin and nature of cancer. Science. 1997 Nov 7;278(5340):1043–1050. doi: 10.1126/science.278.5340.1043. [DOI] [PubMed] [Google Scholar]
  5. Ford D., Easton D. F. The genetics of breast and ovarian cancer. Br J Cancer. 1995 Oct;72(4):805–812. doi: 10.1038/bjc.1995.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geller G., Botkin J. R., Green M. J., Press N., Biesecker B. B., Wilfond B., Grana G., Daly M. B., Schneider K., Kahn M. J. Genetic testing for susceptibility to adult-onset cancer. The process and content of informed consent. JAMA. 1997 May 14;277(18):1467–1474. [PubMed] [Google Scholar]
  7. Greenland S. Methods for epidemiologic analyses of multiple exposures: a review and comparative study of maximum-likelihood, preliminary-testing, and empirical-Bayes regression. Stat Med. 1993 Apr 30;12(8):717–736. doi: 10.1002/sim.4780120802. [DOI] [PubMed] [Google Scholar]
  8. Guyer M. S., Collins F. S. How is the Human Genome Project doing, and what have we learned so far? Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):10841–10848. doi: 10.1073/pnas.92.24.10841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holtzman N. A., Murphy P. D., Watson M. S., Barr P. A. Predictive genetic testing: from basic research to clinical practice. Science. 1997 Oct 24;278(5338):602–605. [PubMed] [Google Scholar]
  10. Hubbard R., Lewontin R. C. Pitfalls of genetic testing. N Engl J Med. 1996 May 2;334(18):1192–1194. doi: 10.1056/NEJM199605023341812. [DOI] [PubMed] [Google Scholar]
  11. Laken S. J., Petersen G. M., Gruber S. B., Oddoux C., Ostrer H., Giardiello F. M., Hamilton S. R., Hampel H., Markowitz A., Klimstra D. Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet. 1997 Sep;17(1):79–83. doi: 10.1038/ng0997-79. [DOI] [PubMed] [Google Scholar]
  12. Savill J. Molecular genetic approaches to understanding disease. BMJ. 1997 Jan 11;314(7074):126–129. doi: 10.1136/bmj.314.7074.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schuler G. D., Boguski M. S., Stewart E. A., Stein L. D., Gyapay G., Rice K., White R. E., Rodriguez-Tomé P., Aggarwal A., Bajorek E. A gene map of the human genome. Science. 1996 Oct 25;274(5287):540–546. [PubMed] [Google Scholar]
  14. Swift M., Kupper L. L., Chase C. L. Effective testing of gene-disease associations. Am J Hum Genet. 1990 Aug;47(2):266–274. [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES