Abstract
We have identified the first stop-codon point mutation in mtDNA to be reported in association with human disease. A 36-year-old woman experienced episodes of encephalopathy accompanied by lactic acidemia and had exercise intolerance and proximal myopathy. Histochemical analysis showed that 90% of muscle fibers exhibited decreased or absent cytochrome c oxidase (COX) activity. Biochemical studies confirmed a severe isolated reduction in COX activity. Muscle immunocytochemistry revealed a pattern suggestive of a primary mtDNA defect in the COX-deficient fibers and was consistent with either reduced stability or impaired assembly of the holoenzyme. Sequence analysis of mtDNA identified a novel heteroplasmic G-->A point mutation at position 9952 in the patient's skeletal muscle, which was not detected in her leukocyte mtDNA or in that of 120 healthy controls or 60 additional patients with mitochondrial disease. This point mutation is located in the 3' end of the gene for subunit III of COX and is predicted to result in the loss of the last 13 amino acids of the highly conserved C-terminal region of this subunit. It was not detected in mtDNA extracted from leukocytes, skeletal muscle, or myoblasts of the patient's mother or her two sons, indicating that this mutation is not maternally transmitted. Single-fiber PCR studies provided direct evidence for an association between this point mutation and COX deficiency and indicated that the proportion of mutant mtDNA required to induce COX deficiency is lower than that reported for tRNA-gene point mutations. The findings reported here represent only the second case of isolated COX deficiency to be defined at the molecular genetic level and reveal a new mutational mechanism in mitochondrial disease.
Full Text
The Full Text of this article is available as a PDF (736.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. L., Lightowlers R. N., Turnbull D. M. Molecular analysis of cytochrome c oxidase deficiency in Leigh's syndrome. Ann Neurol. 1997 Feb;41(2):268–270. doi: 10.1002/ana.410410219. [DOI] [PubMed] [Google Scholar]
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Bernes S. M., Bacino C., Prezant T. R., Pearson M. A., Wood T. S., Fournier P., Fischel-Ghodsian N. Identical mitochondrial DNA deletion in mother with progressive external ophthalmoplegia and son with Pearson marrow-pancreas syndrome. J Pediatr. 1993 Oct;123(4):598–602. doi: 10.1016/s0022-3476(05)80962-x. [DOI] [PubMed] [Google Scholar]
- Boulet L., Karpati G., Shoubridge E. A. Distribution and threshold expression of the tRNA(Lys) mutation in skeletal muscle of patients with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet. 1992 Dec;51(6):1187–1200. [PMC free article] [PubMed] [Google Scholar]
- Brown W. M., George M., Jr, Wilson A. C. Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1967–1971. doi: 10.1073/pnas.76.4.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capaldi R. A. Structure and function of cytochrome c oxidase. Annu Rev Biochem. 1990;59:569–596. doi: 10.1146/annurev.bi.59.070190.003033. [DOI] [PubMed] [Google Scholar]
- Chomyn A., Lai S. T., Shakeley R., Bresolin N., Scarlato G., Attardi G. Platelet-mediated transformation of mtDNA-less human cells: analysis of phenotypic variability among clones from normal individuals--and complementation behavior of the tRNALys mutation causing myoclonic epilepsy and ragged red fibers. Am J Hum Genet. 1994 Jun;54(6):966–974. [PMC free article] [PubMed] [Google Scholar]
- Clark K. M., Bindoff L. A., Lightowlers R. N., Andrews R. M., Griffiths P. G., Johnson M. A., Brierley E. J., Turnbull D. M. Reversal of a mitochondrial DNA defect in human skeletal muscle. Nat Genet. 1997 Jul;16(3):222–224. doi: 10.1038/ng0797-222. [DOI] [PubMed] [Google Scholar]
- Desjardins P., Morais R. Sequence and gene organization of the chicken mitochondrial genome. A novel gene order in higher vertebrates. J Mol Biol. 1990 Apr 20;212(4):599–634. doi: 10.1016/0022-2836(90)90225-B. [DOI] [PubMed] [Google Scholar]
- ENGEL W. K., CUNNINGHAM G. G. RAPID EXAMINATION OF MUSCLE TISSUE. AN IMPROVED TRICHROME METHOD FOR FRESH-FROZEN BIOPSY SECTIONS. Neurology. 1963 Nov;13:919–923. doi: 10.1212/wnl.13.11.919. [DOI] [PubMed] [Google Scholar]
- Giles R. E., Blanc H., Cann H. M., Wallace D. C. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6715–6719. doi: 10.1073/pnas.77.11.6715. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haller R. G., Lewis S. F., Estabrook R. W., DiMauro S., Servidei S., Foster D. W. Exercise intolerance, lactic acidosis, and abnormal cardiopulmonary regulation in exercise associated with adult skeletal muscle cytochrome c oxidase deficiency. J Clin Invest. 1989 Jul;84(1):155–161. doi: 10.1172/JCI114135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haltia T., Saraste M., Wikström M. Subunit III of cytochrome c oxidase is not involved in proton translocation: a site-directed mutagenesis study. EMBO J. 1991 Aug;10(8):2015–2021. doi: 10.1002/j.1460-2075.1991.tb07731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanna M. G., Nelson I. P., Morgan-Hughes J. A., Harding A. E. Impaired mitochondrial translation in human myoblasts harbouring the mitochondrial DNA tRNA lysine 8344 A-->G (MERRF) mutation: relationship to proportion of mutant mitochondrial DNA. J Neurol Sci. 1995 Jun;130(2):154–160. doi: 10.1016/0022-510x(95)00022-t. [DOI] [PubMed] [Google Scholar]
- Hanna M. G., Nelson I., Sweeney M. G., Cooper J. M., Watkins P. J., Morgan-Hughes J. A., Harding A. E. Congenital encephalomyopathy and adult-onset myopathy and diabetes mellitus: different phenotypic associations of a new heteroplasmic mtDNA tRNA glutamic acid mutation. Am J Hum Genet. 1995 May;56(5):1026–1033. [PMC free article] [PubMed] [Google Scholar]
- Holt I. J., Harding A. E., Morgan-Hughes J. A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988 Feb 25;331(6158):717–719. doi: 10.1038/331717a0. [DOI] [PubMed] [Google Scholar]
- Keightley J. A., Hoffbuhr K. C., Burton M. D., Salas V. M., Johnston W. S., Penn A. M., Buist N. R., Kennaway N. G. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet. 1996 Apr;12(4):410–416. doi: 10.1038/ng0496-410. [DOI] [PubMed] [Google Scholar]
- Kobayashi Y., Momoi M. Y., Tominaga K., Momoi T., Nihei K., Yanagisawa M., Kagawa Y., Ohta S. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun. 1990 Dec 31;173(3):816–822. doi: 10.1016/s0006-291x(05)80860-5. [DOI] [PubMed] [Google Scholar]
- Larsson N. G., Eiken H. G., Boman H., Holme E., Oldfors A., Tulinius M. H. Lack of transmission of deleted mtDNA from a woman with Kearns-Sayre syndrome to her child. Am J Hum Genet. 1992 Feb;50(2):360–363. [PMC free article] [PubMed] [Google Scholar]
- Manfredi G., Schon E. A., Moraes C. T., Bonilla E., Berry G. T., Sladky J. T., DiMauro S. A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul Disord. 1995 Sep;5(5):391–398. doi: 10.1016/0960-8966(94)00079-o. [DOI] [PubMed] [Google Scholar]
- Mann V. M., Cooper J. M., Krige D., Daniel S. E., Schapira A. H., Marsden C. D. Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson's disease. Brain. 1992 Apr;115(Pt 2):333–342. doi: 10.1093/brain/115.2.333. [DOI] [PubMed] [Google Scholar]
- Moraes C. T. Mitochondrial disorders. Curr Opin Neurol. 1996 Oct;9(5):369–374. doi: 10.1097/00019052-199610000-00010. [DOI] [PubMed] [Google Scholar]
- Moraes C. T., Schon E. A. Detection and analysis of mitochondrial DNA and RNA in muscle by in situ hybridization and single-fiber PCR. Methods Enzymol. 1996;264:522–540. doi: 10.1016/s0076-6879(96)64046-4. [DOI] [PubMed] [Google Scholar]
- Morgan-Hughes J. A., Darveniza P., Kahn S. N., Landon D. N., Sherratt R. M., Land J. M., Clark J. B. A mitochondrial myopathy characterized by a deficiency in reducible cytochrome b. Brain. 1977 Dec;100(4):617–640. doi: 10.1093/brain/100.4.617. [DOI] [PubMed] [Google Scholar]
- Munaro M., Tiranti V., Sandonà D., Lamantea E., Uziel G., Bisson R., Zeviani M. A single cell complementation class is common to several cases of cytochrome c oxidase-defective Leigh's syndrome. Hum Mol Genet. 1997 Feb;6(2):221–228. doi: 10.1093/hmg/6.2.221. [DOI] [PubMed] [Google Scholar]
- Nelson I., Degoul F., Obermaier-Kusser B., Romero N., Borrone C., Marsac C., Vayssiere J. L., Gerbitz K., Fardeau M., Ponsot G. Mapping of heteroplasmic mitochondrial DNA deletions in Kearns-Sayre syndrome. Nucleic Acids Res. 1989 Oct 25;17(20):8117–8124. doi: 10.1093/nar/17.20.8117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petty R. K., Harding A. E., Morgan-Hughes J. A. The clinical features of mitochondrial myopathy. Brain. 1986 Oct;109(Pt 5):915–938. doi: 10.1093/brain/109.5.915. [DOI] [PubMed] [Google Scholar]
- Poulton J., Deadman M. E., Gardiner R. M. Duplications of mitochondrial DNA in mitochondrial myopathy. Lancet. 1989 Feb 4;1(8632):236–240. doi: 10.1016/s0140-6736(89)91256-7. [DOI] [PubMed] [Google Scholar]
- Schon E. A., Bonilla E., DiMauro S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr. 1997 Apr;29(2):131–149. doi: 10.1023/a:1022685929755. [DOI] [PubMed] [Google Scholar]
- Sciacco M., Bonilla E., Schon E. A., DiMauro S., Moraes C. T. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet. 1994 Jan;3(1):13–19. doi: 10.1093/hmg/3.1.13. [DOI] [PubMed] [Google Scholar]
- Shoubridge E. A., Johns T., Karpati G. Complete restoration of a wild-type mtDNA genotype in regenerating muscle fibres in a patient with a tRNA point mutation and mitochondrial encephalomyopathy. Hum Mol Genet. 1997 Dec;6(13):2239–2242. doi: 10.1093/hmg/6.13.2239. [DOI] [PubMed] [Google Scholar]
- Taanman J. W., Burton M. D., Marusich M. F., Kennaway N. G., Capaldi R. A. Subunit specific monoclonal antibodies show different steady-state levels of various cytochrome-c oxidase subunits in chronic progressive external ophthalmoplegia. Biochim Biophys Acta. 1996 Apr 12;1315(3):199–207. doi: 10.1016/0925-4439(95)00127-1. [DOI] [PubMed] [Google Scholar]
- Tanaka M., Ozawa T. Strand asymmetry in human mitochondrial DNA mutations. Genomics. 1994 Jul 15;22(2):327–335. doi: 10.1006/geno.1994.1391. [DOI] [PubMed] [Google Scholar]
- Tsukihara T., Aoyama H., Yamashita E., Tomizaki T., Yamaguchi H., Shinzawa-Itoh K., Nakashima R., Yaono R., Yoshikawa S. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science. 1996 May 24;272(5265):1136–1144. doi: 10.1126/science.272.5265.1136. [DOI] [PubMed] [Google Scholar]
- Weber K., Wilson J. N., Taylor L., Brierley E., Johnson M. A., Turnbull D. M., Bindoff L. A. A new mtDNA mutation showing accumulation with time and restriction to skeletal muscle. Am J Hum Genet. 1997 Feb;60(2):373–380. [PMC free article] [PubMed] [Google Scholar]
- Wu S., Moreno-Sanchez R., Rottenberg H. Involvement of cytochrome c oxidase subunit III in energy coupling. Biochemistry. 1995 Dec 19;34(50):16298–16305. doi: 10.1021/bi00050a009. [DOI] [PubMed] [Google Scholar]