Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Aug;63(2):428–435. doi: 10.1086/301957

A high rate (20%-30%) of parental consanguinity in cytochrome-oxidase deficiency.

J C von Kleist-Retzow 1, V Cormier-Daire 1, P de Lonlay 1, B Parfait 1, D Chretien 1, P Rustin 1, J Feingold 1, A Rötig 1, A Munnich 1
PMCID: PMC1377299  PMID: 9683589

Abstract

By studying a large series of 157 patients, we found that complex I (33%), complex IV (28%), and complex I+IV (28%) deficiencies were the most common causes of respiratory chain (RC) defects in childhood. Truncal hypotonia (36%), antenatal (20%) and postnatal (31%) growth retardation, cardiomyopathy (24%), encephalopathy (20%), and liver failure (20%) were the main clinical features in our series. No correlation between the type of RC defect and the clinical presentation was noted, but complex I and complex I+IV deficiencies were significantly more frequent in cases of cardiomyopathy (P<.01) and hepatic failure (P<.05), respectively. The sex ratio (male/female) in our entire series was mostly balanced but was skewed toward males being affected with complex I deficiency (sex ratio R=1.68). Interestingly, a high rate of parental consanguinity was observed in complex IV (20%) and complex I+IV (28%) deficiencies. When parental consanguinity was related to geographic origin, an even higher rate of inbreeding was observed in North African families (76%, P<.01). This study gives strong support to the view that an autosomal recessive mode of inheritance is involved in most cases of mitochondrial disorders in childhood, a feature that is particularly relevant to genetic counseling for this devastating condition.

Full Text

The Full Text of this article is available as a PDF (856.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bione S., D'Adamo P., Maestrini E., Gedeon A. K., Bolhuis P. A., Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet. 1996 Apr;12(4):385–389. doi: 10.1038/ng0496-385. [DOI] [PubMed] [Google Scholar]
  2. Bolhuis P. A., Hensels G. W., Hulsebos T. J., Baas F., Barth P. G. Mapping of the locus for X-linked cardioskeletal myopathy with neutropenia and abnormal mitochondria (Barth syndrome) to Xq28. Am J Hum Genet. 1991 Mar;48(3):481–485. [PMC free article] [PubMed] [Google Scholar]
  3. Bourgeron T., Rustin P., Chretien D., Birch-Machin M., Bourgeois M., Viegas-Péquignot E., Munnich A., Rötig A. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet. 1995 Oct;11(2):144–149. doi: 10.1038/ng1095-144. [DOI] [PubMed] [Google Scholar]
  4. Bouvet J. P., Maroteaux P., Feingold J. Etude génétique du nanisme thanatophore. Ann Genet. 1974 Sep;17(3):181–188. [PubMed] [Google Scholar]
  5. Jackson M. J., Schaefer J. A., Johnson M. A., Morris A. A., Turnbull D. M., Bindoff L. A. Presentation and clinical investigation of mitochondrial respiratory chain disease. A study of 51 patients. Brain. 1995 Apr;118(Pt 2):339–357. doi: 10.1093/brain/118.2.339. [DOI] [PubMed] [Google Scholar]
  6. Parfait B., Percheron A., Chretien D., Rustin P., Munnich A., Rötig A. No mitochondrial cytochrome oxidase (COX) gene mutations in 18 cases of COX deficiency. Hum Genet. 1997 Dec;101(2):247–250. doi: 10.1007/s004390050625. [DOI] [PubMed] [Google Scholar]
  7. Pitkänen S., Feigenbaum A., Laframboise R., Robinson B. H. NADH-coenzyme Q reductase (complex I) deficiency: heterogeneity in phenotype and biochemical findings. J Inherit Metab Dis. 1996;19(5):675–686. doi: 10.1007/BF01799845. [DOI] [PubMed] [Google Scholar]
  8. Rahman S., Blok R. B., Dahl H. H., Danks D. M., Kirby D. M., Chow C. W., Christodoulou J., Thorburn D. R. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol. 1996 Mar;39(3):343–351. doi: 10.1002/ana.410390311. [DOI] [PubMed] [Google Scholar]
  9. Robinson B. H., De Meirleir L., Glerum M., Sherwood G., Becker L. Clinical presentation of mitochondrial respiratory chain defects in NADH-coenzyme Q reductase and cytochrome oxidase: clues to pathogenesis of Leigh disease. J Pediatr. 1987 Feb;110(2):216–222. doi: 10.1016/s0022-3476(87)80157-9. [DOI] [PubMed] [Google Scholar]
  10. Robinson B. H. Lacticacidemia. Biochim Biophys Acta. 1993 Oct 20;1182(3):231–244. doi: 10.1016/0925-4439(93)90064-8. [DOI] [PubMed] [Google Scholar]
  11. Rowland L. P., Blake D. M., Hirano M., Di Mauro S., Schon E. A., Hays A. P., Devivo D. C. Clinical syndromes associated with ragged red fibers. Rev Neurol (Paris) 1991;147(6-7):467–473. [PubMed] [Google Scholar]
  12. Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J. M., Munnich A. Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta. 1994 Jul;228(1):35–51. doi: 10.1016/0009-8981(94)90055-8. [DOI] [PubMed] [Google Scholar]
  13. Tiranti V., Munaro M., Sandonà D., Lamantea E., Rimoldi M., DiDonato S., Bisson R., Zeviani M. Nuclear DNA origin of cytochrome c oxidase deficiency in Leigh's syndrome: genetic evidence based on patient's-derived rho degrees transformants. Hum Mol Genet. 1995 Nov;4(11):2017–2023. doi: 10.1093/hmg/4.11.2017. [DOI] [PubMed] [Google Scholar]
  14. Tzagoloff A., Dieckmann C. L. PET genes of Saccharomyces cerevisiae. Microbiol Rev. 1990 Sep;54(3):211–225. doi: 10.1128/mr.54.3.211-225.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Zhuchenko O., Wehnert M., Bailey J., Sun Z. S., Lee C. C. Isolation, mapping, and genomic structure of an X-linked gene for a subunit of human mitochondrial complex I. Genomics. 1996 Nov 1;37(3):281–288. doi: 10.1006/geno.1996.0561. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES