Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Aug;63(2):638–647. doi: 10.1086/301958

Robustness and power of the maximum-likelihood-binomial and maximum-likelihood-score methods, in multipoint linkage analysis of affected-sibship data.

L Abel 1, B Müller-Myhsok 1
PMCID: PMC1377300  PMID: 9683590

Abstract

The maximum-likelihood-binomial (MLB) method, based on the binomial distribution of parental marker alleles among affected offspring, recently was shown to provide promising results by two-point linkage analysis of affected-sibship data. In this article, we extend the MLB method to multipoint linkage analysis, using the general framework of hidden Markov models. Furthermore, we perform a large simulation study to investigate the robustness and power of the MLB method, compared with those of the maximum-likelihood-score (MLS) method as implemented in MAPMAKER/SIBS, in the multipoint analysis of different affected-sibship samples. Analyses of multiple-affected sibships by means of the MLS were conducted by consideration of all possible sib pairs, with (weighted MLS [MLSw]) or without (unweighted MLS [MLSu]) application of a classic weighting procedure. In simulations under the null hypothesis, the MLB provided very consistent type I errors regardless of the type of family sample (sib pairs or multiple-affected sibships), as did the MLS for samples with sib pairs only. When samples included multiple-affected sibships, the MLSu led to inflation of low type I errors, whereas the MLSw yielded very conservative tests. Power comparisons showed that the MLB generally was more powerful than the MLS, except in recessive models with allele frequencies <.3. Missing parental marker data did not strongly influence type I error and power results in these multipoint analyses. The MLB approach, which in a natural way accounts for multiple-affected sibships and which provides a simple likelihood-ratio test for linkage, is an interesting alternative for multipoint analysis of sibships.

Full Text

The Full Text of this article is available as a PDF (662.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abel L., Alcais A., Mallet A. Comparison of four sib-pair linkage methods for analyzing sibships with more than two affecteds: interest of the binomial maximum likelihood approach. Genet Epidemiol. 1998;15(4):371–390. doi: 10.1002/(SICI)1098-2272(1998)15:4<371::AID-GEPI4>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  2. Badner J. A., Chakravarti A., Wagener D. K. A test of nonrandom segregation. Genet Epidemiol. 1984;1(4):329–340. doi: 10.1002/gepi.1370010405. [DOI] [PubMed] [Google Scholar]
  3. Daly M. J., Lander E. S. The importance of being independent: sib pair analysis in diabetes. Nat Genet. 1996 Oct;14(2):131–132. doi: 10.1038/ng1096-131. [DOI] [PubMed] [Google Scholar]
  4. Hanis C. L., Boerwinkle E., Chakraborty R., Ellsworth D. L., Concannon P., Stirling B., Morrison V. A., Wapelhorst B., Spielman R. S., Gogolin-Ewens K. J. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet. 1996 Jun;13(2):161–166. doi: 10.1038/ng0696-161. [DOI] [PubMed] [Google Scholar]
  5. Holmans P. Asymptotic properties of affected-sib-pair linkage analysis. Am J Hum Genet. 1993 Feb;52(2):362–374. [PMC free article] [PubMed] [Google Scholar]
  6. Knapp M., Seuchter S. A., Baur M. P. Linkage analysis in nuclear families. 2: Relationship between affected sib-pair tests and lod score analysis. Hum Hered. 1994 Jan-Feb;44(1):44–51. doi: 10.1159/000154188. [DOI] [PubMed] [Google Scholar]
  7. Kong A., Frigge M., Bell G. I., Lander E. S., Daly M. J., Cox N. J. Diabetes, dependence, asymptotics, selection and significance. Nat Genet. 1997 Oct;17(2):148–148. doi: 10.1038/ng1097-148. [DOI] [PubMed] [Google Scholar]
  8. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  9. Kruglyak L., Lander E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet. 1995 Aug;57(2):439–454. [PMC free article] [PubMed] [Google Scholar]
  10. Lander E. S., Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363–2367. doi: 10.1073/pnas.84.8.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Majumder P. P., Pal N. Nonrandom segregation: uniformly most powerful test and related considerations. Genet Epidemiol. 1987;4(4):277–287. doi: 10.1002/gepi.1370040406. [DOI] [PubMed] [Google Scholar]
  12. Meunier F., Philippi A., Martinez M., Demenais F. Affected sib-pair tests for linkage: type I errors with dependent sib-pairs. Genet Epidemiol. 1997;14(6):1107–1111. doi: 10.1002/(SICI)1098-2272(1997)14:6<1107::AID-GEPI91>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  13. Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet. 1990 Feb;46(2):222–228. [PMC free article] [PubMed] [Google Scholar]
  14. Speer M. C., Terwilliger J. D., Ott J. Data simulation for GAW9 problems 1 and 2. Genet Epidemiol. 1995;12(6):561–564. doi: 10.1002/gepi.1370120606. [DOI] [PubMed] [Google Scholar]
  15. Suarez B. K., Van Eerdewegh P. A comparison of three affected-sib-pair scoring methods to detect HLA-linked disease susceptibility genes. Am J Med Genet. 1984 May;18(1):135–146. doi: 10.1002/ajmg.1320180117. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES