Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Aug;63(2):447–454. doi: 10.1086/301959

Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population.

K Majamaa 1, J S Moilanen 1, S Uimonen 1, A M Remes 1, P I Salmela 1, M Kärppä 1, K A Majamaa-Voltti 1, H Rusanen 1, M Sorri 1, K J Peuhkurinen 1, I E Hassinen 1
PMCID: PMC1377301  PMID: 9683591

Abstract

Mitochondrial diseases are characterized by considerable clinical variability and are most often caused by mutations in mtDNA. Because of the phenotypic variability, epidemiological studies of the frequency of these disorders have been difficult to perform. We studied the prevalence of the mtDNA mutation at nucleotide 3243 in an adult population of 245,201 individuals. This mutation is the most common molecular etiology of MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes), one of the clinical entities among the mitochondrial disorders. Patients with diabetes mellitus, sensorineural hearing impairment, epilepsy, occipital brain infarct, ophthalmoplegia, cerebral white-matter disease, basal-ganglia calcifications, hypertrophic cardiomyopathy, or ataxia were ascertained on the basis of defined clinical criteria and family-history data. A total of 615 patients were identified, and 480 samples were examined for the mutation. The mutation was found in 11 pedigrees, and its frequency was calculated to be >=16. 3/100,000 in the adult population (95% confidence interval 11.3-21. 4/100,000). The mutation had arisen in the population at least nine times, as determined by mtDNA haplotyping. Clinical evaluation of the probands revealed a syndrome that most frequently consisted of hearing impairment, cognitive decline, and short stature. The high prevalence of the common MELAS mutation in the adult population suggests that mitochondrial disorders constitute one of the largest diagnostic categories of neurogenetic diseases.

Full Text

The Full Text of this article is available as a PDF (265.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gardner M. J., Altman D. G. Confidence intervals rather than P values: estimation rather than hypothesis testing. Br Med J (Clin Res Ed) 1986 Mar 15;292(6522):746–750. doi: 10.1136/bmj.292.6522.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Gerbitz K. D., van den Ouweland J. M., Maassen J. A., Jaksch M. Mitochondrial diabetes mellitus: a review. Biochim Biophys Acta. 1995 May 24;1271(1):253–260. doi: 10.1016/0925-4439(95)00036-4. [DOI] [PubMed] [Google Scholar]
  3. Goto Y., Nonaka I., Horai S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature. 1990 Dec 13;348(6302):651–653. doi: 10.1038/348651a0. [DOI] [PubMed] [Google Scholar]
  4. Hutchin T. P., Cortopassi G. A. Multiple origins of a mitochondrial mutation conferring deafness. Genetics. 1997 Mar;145(3):771–776. doi: 10.1093/genetics/145.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Johns D. R. Seminars in medicine of the Beth Israel Hospital, Boston. Mitochondrial DNA and disease. N Engl J Med. 1995 Sep 7;333(10):638–644. doi: 10.1056/NEJM199509073331007. [DOI] [PubMed] [Google Scholar]
  6. Kadowaki T., Kadowaki H., Mori Y., Tobe K., Sakuta R., Suzuki Y., Tanabe Y., Sakura H., Awata T., Goto Y. A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA. N Engl J Med. 1994 Apr 7;330(14):962–968. doi: 10.1056/NEJM199404073301403. [DOI] [PubMed] [Google Scholar]
  7. Kobayashi Y., Momoi M. Y., Tominaga K., Momoi T., Nihei K., Yanagisawa M., Kagawa Y., Ohta S. A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). Biochem Biophys Res Commun. 1990 Dec 31;173(3):816–822. doi: 10.1016/s0006-291x(05)80860-5. [DOI] [PubMed] [Google Scholar]
  8. Liu V. W., Zhang C., Linnane A. W., Nagley P. Quantitative allele-specific PCR: demonstration of age-associated accumulation in human tissues of the A-->G mutation at nucleotide 3243 in mitochondrial DNA. Hum Mutat. 1997;9(3):265–271. doi: 10.1002/(SICI)1098-1004(1997)9:3<265::AID-HUMU8>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  9. Maassen J. A., Kadowaki T. Maternally inherited diabetes and deafness: a new diabetes subtype. Diabetologia. 1996 Apr;39(4):375–382. doi: 10.1007/BF00400668. [DOI] [PubMed] [Google Scholar]
  10. Majamaa K., Turkka J., Kärppä M., Winqvist S., Hassinen I. E. The common MELAS mutation A3243G in mitochondrial DNA among young patients with an occipital brain infarct. Neurology. 1997 Nov;49(5):1331–1334. doi: 10.1212/wnl.49.5.1331. [DOI] [PubMed] [Google Scholar]
  11. Mariotti C., Savarese N., Suomalainen A., Rimoldi M., Comi G., Prelle A., Antozzi C., Servidei S., Jarre L., DiDonato S. Genotype to phenotype correlations in mitochondrial encephalomyopathies associated with the A3243G mutation of mitochondrial DNA. J Neurol. 1995 May;242(5):304–312. doi: 10.1007/BF00878873. [DOI] [PubMed] [Google Scholar]
  12. Morgan-Hughes J. A., Sweeney M. G., Cooper J. M., Hammans S. R., Brockington M., Schapira A. H., Harding A. E., Clark J. B. Mitochondrial DNA (mtDNA) diseases: correlation of genotype to phenotype. Biochim Biophys Acta. 1995 May 24;1271(1):135–140. doi: 10.1016/0925-4439(95)00020-5. [DOI] [PubMed] [Google Scholar]
  13. Morten K. J., Poulton J., Sykes B. Multiple independent occurrence of the 3243 mutation in mitochondrial tRNA(leuUUR) in patients with the MELAS phenotype. Hum Mol Genet. 1995 Sep;4(9):1689–1691. doi: 10.1093/hmg/4.9.1689. [DOI] [PubMed] [Google Scholar]
  14. Norio R., Nevanlinna H. R., Perheentupa J. Hereditary diseases in Finland; rare flora in rare soul. Ann Clin Res. 1973 Jun;5(3):109–141. [PubMed] [Google Scholar]
  15. Passarino G., Semino O., Modiano G., Santachiara-Benerecetti A. S. COII/tRNA(Lys) intergenic 9-bp deletion and other mtDNA markers clearly reveal that the Tharus (southern Nepal) have Oriental affinities. Am J Hum Genet. 1993 Sep;53(3):609–618. [PMC free article] [PubMed] [Google Scholar]
  16. Pavlakis S. G., Phillips P. C., DiMauro S., De Vivo D. C., Rowland L. P. Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes: a distinctive clinical syndrome. Ann Neurol. 1984 Oct;16(4):481–488. doi: 10.1002/ana.410160409. [DOI] [PubMed] [Google Scholar]
  17. Peltonen L., Pekkarinen P., Aaltonen J. Messages from an isolate: lessons from the Finnish gene pool. Biol Chem Hoppe Seyler. 1995 Dec;376(12):697–704. doi: 10.1515/bchm3.1995.376.12.697. [DOI] [PubMed] [Google Scholar]
  18. Schon E. A., Bonilla E., DiMauro S. Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr. 1997 Apr;29(2):131–149. doi: 10.1023/a:1022685929755. [DOI] [PubMed] [Google Scholar]
  19. Shoffner J. M. Maternal inheritance and the evaluation of oxidative phosphorylation diseases. Lancet. 1996 Nov 9;348(9037):1283–1288. doi: 10.1016/S0140-6736(96)09138-6. [DOI] [PubMed] [Google Scholar]
  20. Smith M. L., Hua X. Y., Marsden D. L., Liu D., Kennaway N. G., Ngo K. Y., Haas R. H. Diabetes and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS): radiolabeled polymerase chain reaction is necessary for accurate detection of low percentages of mutation. J Clin Endocrinol Metab. 1997 Sep;82(9):2826–2831. doi: 10.1210/jcem.82.9.4222. [DOI] [PubMed] [Google Scholar]
  21. Sue C. M., Mitchell P., Crimmins D. S., Moshegov C., Byrne E., Morris J. G. Pigmentary retinopathy associated with the mitochondrial DNA 3243 point mutation. Neurology. 1997 Oct;49(4):1013–1017. doi: 10.1212/wnl.49.4.1013. [DOI] [PubMed] [Google Scholar]
  22. Suomalainen A., Majander A., Pihko H., Peltonen L., Syvänen A. C. Quantification of tRNA3243(Leu) point mutation of mitochondrial DNA in MELAS patients and its effects on mitochondrial transcription. Hum Mol Genet. 1993 May;2(5):525–534. doi: 10.1093/hmg/2.5.525. [DOI] [PubMed] [Google Scholar]
  23. Torroni A., Huoponen K., Francalacci P., Petrozzi M., Morelli L., Scozzari R., Obinu D., Savontaus M. L., Wallace D. C. Classification of European mtDNAs from an analysis of three European populations. Genetics. 1996 Dec;144(4):1835–1850. doi: 10.1093/genetics/144.4.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tully G., Sullivan K. M., Nixon P., Stones R. E., Gill P. Rapid detection of mitochondrial sequence polymorphisms using multiplex solid-phase fluorescent minisequencing. Genomics. 1996 May 15;34(1):107–113. doi: 10.1006/geno.1996.0247. [DOI] [PubMed] [Google Scholar]
  25. Wallace D. C. Mitochondrial DNA mutations in diseases of energy metabolism. J Bioenerg Biomembr. 1994 Jun;26(3):241–250. doi: 10.1007/BF00763096. [DOI] [PubMed] [Google Scholar]
  26. Wong L. J., Lam C. W. Alternative, noninvasive tissues for quantitative screening of mutant mitochondrial DNA. Clin Chem. 1997 Jul;43(7):1241–1243. [PubMed] [Google Scholar]
  27. de la Chapelle A. Disease gene mapping in isolated human populations: the example of Finland. J Med Genet. 1993 Oct;30(10):857–865. doi: 10.1136/jmg.30.10.857. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES