Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Aug;63(2):625–637. doi: 10.1086/301973

From amplification to gene in thyroid cancer: a high-resolution mapped bacterial-artificial-chromosome resource for cancer chromosome aberrations guides gene discovery after comparative genome hybridization.

X Chen 1, J A Knauf 1, R Gonsky 1, M Wang 1, E H Lai 1, S Chissoe 1, J A Fagin 1, J R Korenberg 1
PMCID: PMC1377314  PMID: 9683604

Abstract

Chromosome rearrangements associated with neoplasms provide a rich resource for definition of the pathways of tumorigenesis. The power of comparative genome hybridization (CGH) to identify novel genes depends on the existence of suitable markers, which are lacking throughout most of the genome. We now report a general approach that translates CGH data into higher-resolution genomic-clone data that are then used to define the genes located in aneuploid regions. We used CGH to study 33 thyroid-tumor DNAs and two tumor-cell-line DNAs. The results revealed amplifications of chromosome band 2p21, with less-intense amplification on 2p13, 19q13.1, and 1p36 and with least-intense amplification on 1p34, 1q42, 5q31, 5q33-34, 9q32-34, and 14q32. To define the 2p21 region amplified, a dense array of 373 FISH-mapped chromosome 2 bacterial artificial chromosomes (BACs) was constructed, and 87 of these were hybridized to a tumor-cell line. Four BACs carried genomic DNA that was amplified in these cells. The maximum amplified region was narrowed to 3-6 Mb by multicolor FISH with the flanking BACs, and the minimum amplicon size was defined by a contig of 420 kb. Sequence analysis of the amplified BAC 1D9 revealed a fragment of the gene, encoding protein kinase C epsilon (PKCepsilon), that was then shown to be amplified and rearranged in tumor cells. In summary, CGH combined with a dense mapped resource of BACs and large-scale sequencing has led directly to the definition of PKCepsilon as a previously unmapped candidate gene involved in thyroid tumorigenesis.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Basta P., Strickland M. B., Holmes W., Loomis C. R., Ballas L. M., Burns D. J. Sequence and expression of human protein kinase C-epsilon. Biochim Biophys Acta. 1992 Sep 24;1132(2):154–160. doi: 10.1016/0167-4781(92)90006-l. [DOI] [PubMed] [Google Scholar]
  3. Bentz M., Werner C. A., Döhner H., Joos S., Barth T. F., Siebert R., Schröder M., Stilgenbauer S., Fischer K., Möller P. High incidence of chromosomal imbalances and gene amplifications in the classical follicular variant of follicle center lymphoma. Blood. 1996 Aug 15;88(4):1437–1444. [PubMed] [Google Scholar]
  4. Bishop J. M. The molecular genetics of cancer. Science. 1987 Jan 16;235(4786):305–311. doi: 10.1126/science.3541204. [DOI] [PubMed] [Google Scholar]
  5. Bockmühl U., Petersen I., Schwendel A., Dietel M. Genetisches Screening von Kopf-Hals-Karzinomen mittels der Komparativen Genomischen Hybridisierung (CGH). Laryngorhinootologie. 1996 Jul;75(7):408–414. doi: 10.1055/s-2007-997605. [DOI] [PubMed] [Google Scholar]
  6. Boerman R. H., Anderl K., Herath J., Borell T., Johnson N., Schaeffer-Klein J., Kirchhof A., Raap A. K., Scheithauer B. W., Jenkins R. B. The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. J Neuropathol Exp Neurol. 1996 Sep;55(9):973–981. doi: 10.1097/00005072-199609000-00004. [DOI] [PubMed] [Google Scholar]
  7. Brodeur G. M., Seeger R. C., Schwab M., Varmus H. E., Bishop J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science. 1984 Jun 8;224(4653):1121–1124. doi: 10.1126/science.6719137. [DOI] [PubMed] [Google Scholar]
  8. Cher M. L., Bova G. S., Moore D. H., Small E. J., Carroll P. R., Pin S. S., Epstein J. I., Isaacs W. B., Jensen R. H. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res. 1996 Jul 1;56(13):3091–3102. [PubMed] [Google Scholar]
  9. Chissoe S. L., Marra M. A., Hillier L., Brinkman R., Wilson R. K., Waterston R. H. Representation of cloned genomic sequences in two sequencing vectors: correlation of DNA sequence and subclone distribution. Nucleic Acids Res. 1997 Aug 1;25(15):2960–2966. doi: 10.1093/nar/25.15.2960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dear S., Staden R. A sequence assembly and editing program for efficient management of large projects. Nucleic Acids Res. 1991 Jul 25;19(14):3907–3911. doi: 10.1093/nar/19.14.3907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Denko N. C., Giaccia A. J., Stringer J. R., Stambrook P. J. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci U S A. 1994 May 24;91(11):5124–5128. doi: 10.1073/pnas.91.11.5124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fagin J. A., Matsuo K., Karmakar A., Chen D. L., Tang S. H., Koeffler H. P. High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest. 1993 Jan;91(1):179–184. doi: 10.1172/JCI116168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fagin J. A. Molecular genetics of human thyroid neoplasms. Annu Rev Med. 1994;45:45–52. doi: 10.1146/annurev.med.45.1.45. [DOI] [PubMed] [Google Scholar]
  14. Finney R. E., Bishop J. M. Predisposition to neoplastic transformation caused by gene replacement of H-ras1. Science. 1993 Jun 4;260(5113):1524–1527. doi: 10.1126/science.8502998. [DOI] [PubMed] [Google Scholar]
  15. Forus A., Weghuis D. O., Smeets D., Fodstad O., Myklebost O., Geurts van Kessel A. Comparative genomic hybridization analysis of human sarcomas: II. Identification of novel amplicons at 6p and 17p in osteosarcomas. Genes Chromosomes Cancer. 1995 Sep;14(1):15–21. doi: 10.1002/gcc.2870140104. [DOI] [PubMed] [Google Scholar]
  16. Fulton L. L., Wilson R. K. Variations on cycle sequencing. Biotechniques. 1994 Aug;17(2):298–301. [PubMed] [Google Scholar]
  17. Ghazvini S., Char D. H., Kroll S., Waldman F. M., Pinkel D. Comparative genomic hybridization analysis of archival formalin-fixed paraffin-embedded uveal melanomas. Cancer Genet Cytogenet. 1996 Sep;90(2):95–101. doi: 10.1016/s0165-4608(96)00076-3. [DOI] [PubMed] [Google Scholar]
  18. Gordon K. B., Thompson C. T., Char D. H., O'Brien J. M., Kroll S., Ghazvini S., Gray J. W. Comparative genomic hybridization in the detection of DNA copy number abnormalities in uveal melanoma. Cancer Res. 1994 Sep 1;54(17):4764–4768. [PubMed] [Google Scholar]
  19. Guan X. Y., Meltzer P. S., Dalton W. S., Trent J. M. Identification of cryptic sites of DNA sequence amplification in human breast cancer by chromosome microdissection. Nat Genet. 1994 Oct;8(2):155–161. doi: 10.1038/ng1094-155. [DOI] [PubMed] [Google Scholar]
  20. Houldsworth J., Chaganti R. S. Comparative genomic hybridization: an overview. Am J Pathol. 1994 Dec;145(6):1253–1260. [PMC free article] [PubMed] [Google Scholar]
  21. Houldsworth J., Mathew S., Rao P. H., Dyomina K., Louie D. C., Parsa N., Offit K., Chaganti R. S. REL proto-oncogene is frequently amplified in extranodal diffuse large cell lymphoma. Blood. 1996 Jan 1;87(1):25–29. [PubMed] [Google Scholar]
  22. Ioannou P. A., Amemiya C. T., Garnes J., Kroisel P. M., Shizuya H., Chen C., Batzer M. A., de Jong P. J. A new bacteriophage P1-derived vector for the propagation of large human DNA fragments. Nat Genet. 1994 Jan;6(1):84–89. doi: 10.1038/ng0194-84. [DOI] [PubMed] [Google Scholar]
  23. Iwabuchi H., Sakamoto M., Sakunaga H., Ma Y. Y., Carcangiu M. L., Pinkel D., Yang-Feng T. L., Gray J. W. Genetic analysis of benign, low-grade, and high-grade ovarian tumors. Cancer Res. 1995 Dec 15;55(24):6172–6180. [PubMed] [Google Scholar]
  24. Joos S., Bergerheim U. S., Pan Y., Matsuyama H., Bentz M., du Manoir S., Lichter P. Mapping of chromosomal gains and losses in prostate cancer by comparative genomic hybridization. Genes Chromosomes Cancer. 1995 Dec;14(4):267–276. doi: 10.1002/gcc.2870140405. [DOI] [PubMed] [Google Scholar]
  25. Jossart G. H., Greulich K. M., Siperstein A. E., Duh Q., Clark O. H., Weier H. U. Molecular and cytogenetic characterization of a t(1;10;21) translocation in the human papillary thyroid cancer cell line TPC-1 expressing the ret/H4 chimeric transcript. Surgery. 1995 Dec;118(6):1018–1023. doi: 10.1016/s0039-6060(05)80108-4. [DOI] [PubMed] [Google Scholar]
  26. Jossart G. H., O'Brien B., Cheng J. F., Tong Q., Jhiang S. M., Duh Q., Clark O. H., Weier H. U. A novel multicolor hybridization scheme applied to localization of a transcribed sequence (D10S170/H4) and deletion mapping in the thyroid cancer cell line TPC-1. Cytogenet Cell Genet. 1996;75(4):254–257. doi: 10.1159/000134495. [DOI] [PubMed] [Google Scholar]
  27. Kallioniemi A., Kallioniemi O. P., Piper J., Tanner M., Stokke T., Chen L., Smith H. S., Pinkel D., Gray J. W., Waldman F. M. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2156–2160. doi: 10.1073/pnas.91.6.2156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kallioniemi A., Kallioniemi O. P., Sudar D., Rutovitz D., Gray J. W., Waldman F., Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992 Oct 30;258(5083):818–821. doi: 10.1126/science.1359641. [DOI] [PubMed] [Google Scholar]
  29. Kallioniemi O. P., Kallioniemi A., Piper J., Isola J., Waldman F. M., Gray J. W., Pinkel D. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 1994 Aug;10(4):231–243. doi: 10.1002/gcc.2870100403. [DOI] [PubMed] [Google Scholar]
  30. Kallioniemi O. P. Linking chromosomal clues. Nat Genet. 1997 Jan;15(1):5–6. doi: 10.1038/ng0197-5. [DOI] [PubMed] [Google Scholar]
  31. Koivisto P., Kononen J., Palmberg C., Tammela T., Hyytinen E., Isola J., Trapman J., Cleutjens K., Noordzij A., Visakorpi T. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 1997 Jan 15;57(2):314–319. [PubMed] [Google Scholar]
  32. Korenberg J. R., Chen X. N. Human cDNA mapping using a high-resolution R-banding technique and fluorescence in situ hybridization. Cytogenet Cell Genet. 1995;69(3-4):196–200. doi: 10.1159/000133962. [DOI] [PubMed] [Google Scholar]
  33. Kuranami M., Powell C. T., Hug H., Zeng Z., Cohen A. M., Guillem J. G. Differential expression of protein kinase C isoforms in human colorectal cancers. J Surg Res. 1995 Feb;58(2):233–239. doi: 10.1006/jsre.1995.1036. [DOI] [PubMed] [Google Scholar]
  34. Lehmann L., Greulich K. M., Zitzelsberger H., Negele T., Spelsberg F., Bauchinger M., Weier H. U. Cytogenetic and molecular genetic characterization of a chromosome 2 rearrangement in a case of human papillary thyroid carcinoma with radiation history. Cancer Genet Cytogenet. 1997 Jul 1;96(1):30–36. doi: 10.1016/s0165-4608(96)00279-8. [DOI] [PubMed] [Google Scholar]
  35. Lemoine N. R., Mayall E. S., Wyllie F. S., Williams E. D., Goyns M., Stringer B., Wynford-Thomas D. High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene. 1989 Feb;4(2):159–164. [PubMed] [Google Scholar]
  36. Mardis E. R. High-throughput detergent extraction of M13 subclones for fluorescent DNA sequencing. Nucleic Acids Res. 1994 Jun 11;22(11):2173–2175. doi: 10.1093/nar/22.11.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Matsumura K. [Detection of DNA amplifications and deletions in oral squamous cell carcinoma cell lines by comparative genomic hybridization (CGH)]. Kokubyo Gakkai Zasshi. 1995 Dec;62(4):513–531. doi: 10.5357/koubyou.62.513. [DOI] [PubMed] [Google Scholar]
  38. Mitelman F. Chromosomes, genes, and cancer. CA Cancer J Clin. 1994 May-Jun;44(3):133–135. doi: 10.3322/canjclin.44.3.133. [DOI] [PubMed] [Google Scholar]
  39. Namba H., Rubin S. A., Fagin J. A. Point mutations of ras oncogenes are an early event in thyroid tumorigenesis. Mol Endocrinol. 1990 Oct;4(10):1474–1479. doi: 10.1210/mend-4-10-1474. [DOI] [PubMed] [Google Scholar]
  40. Ohno S., Akita Y., Konno Y., Imajoh S., Suzuki K. A novel phorbol ester receptor/protein kinase, nPKC, distantly related to the protein kinase C family. Cell. 1988 Jun 3;53(5):731–741. doi: 10.1016/0092-8674(88)90091-8. [DOI] [PubMed] [Google Scholar]
  41. Oliner J. D., Kinzler K. W., Meltzer P. S., George D. L., Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992 Jul 2;358(6381):80–83. doi: 10.1038/358080a0. [DOI] [PubMed] [Google Scholar]
  42. Ono Y., Fujii T., Ogita K., Kikkawa U., Igarashi K., Nishizuka Y. Identification of three additional members of rat protein kinase C family: delta-, epsilon- and zeta-subspecies. FEBS Lett. 1987 Dec 21;226(1):125–128. doi: 10.1016/0014-5793(87)80564-1. [DOI] [PubMed] [Google Scholar]
  43. Ried T., Just K. E., Holtgreve-Grez H., du Manoir S., Speicher M. R., Schröck E., Latham C., Blegen H., Zetterberg A., Cremer T. Comparative genomic hybridization of formalin-fixed, paraffin-embedded breast tumors reveals different patterns of chromosomal gains and losses in fibroadenomas and diploid and aneuploid carcinomas. Cancer Res. 1995 Nov 15;55(22):5415–5423. [PubMed] [Google Scholar]
  44. Ried T., Knutzen R., Steinbeck R., Blegen H., Schröck E., Heselmeyer K., du Manoir S., Auer G. Comparative genomic hybridization reveals a specific pattern of chromosomal gains and losses during the genesis of colorectal tumors. Genes Chromosomes Cancer. 1996 Apr;15(4):234–245. doi: 10.1002/(SICI)1098-2264(199604)15:4<234::AID-GCC5>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  45. Schaap D., Parker P. J., Bristol A., Kriz R., Knopf J. Unique substrate specificity and regulatory properties of PKC-epsilon: a rationale for diversity. FEBS Lett. 1989 Jan 30;243(2):351–357. doi: 10.1016/0014-5793(89)80160-7. [DOI] [PubMed] [Google Scholar]
  46. Schimke R. T. Gene amplification in cultured cells. J Biol Chem. 1988 May 5;263(13):5989–5992. [PubMed] [Google Scholar]
  47. Schröck E., Blume C., Meffert M. C., du Manoir S., Bersch W., Kiessling M., Lozanowa T., Thiel G., Witkowski R., Ried T. Recurrent gain of chromosome arm 7q in low-grade astrocytic tumors studied by comparative genomic hybridization. Genes Chromosomes Cancer. 1996 Apr;15(4):199–205. doi: 10.1002/(SICI)1098-2264(199604)15:4<199::AID-GCC1>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  48. Schütz B. R., Scheurlen W., Krauss J., du Manoir S., Joos S., Bentz M., Lichter P. Mapping of chromosomal gains and losses in primitive neuroectodermal tumors by comparative genomic hybridization. Genes Chromosomes Cancer. 1996 Jul;16(3):196–203. doi: 10.1002/(SICI)1098-2264(199607)16:3<196::AID-GCC7>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  49. Shizuya H., Birren B., Kim U. J., Mancino V., Slepak T., Tachiiri Y., Simon M. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8794–8797. doi: 10.1073/pnas.89.18.8794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Slamon D. J., Godolphin W., Jones L. A., Holt J. A., Wong S. G., Keith D. E., Levin W. J., Stuart S. G., Udove J., Ullrich A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989 May 12;244(4905):707–712. doi: 10.1126/science.2470152. [DOI] [PubMed] [Google Scholar]
  51. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  52. Suarez H. G., du Villard J. A., Severino M., Caillou B., Schlumberger M., Tubiana M., Parmentier C., Monier R. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene. 1990 Apr;5(4):565–570. [PubMed] [Google Scholar]
  53. Szymanska J., Tarkkanen M., Wiklund T., Virolainen M., Blomqvist C., Asko-Seljavaara S., Tukiainen E., Elomaa I., Knuutila S. Gains and losses of DNA sequences in liposarcomas evaluated by comparative genomic hybridization. Genes Chromosomes Cancer. 1996 Feb;15(2):89–94. doi: 10.1002/(SICI)1098-2264(199602)15:2<89::AID-GCC2>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  54. Taniwaki M., Sliverman G. A., Nishida K., Horiike S., Misawa S., Shimazaki C., Miura I., Nagai M., Abe M., Fukuhara S. Translocations and amplification of the BCL2 gene are detected in interphase nuclei of non-Hodgkin's lymphoma by in situ hybridization with yeast artificial chromosome clones. Blood. 1995 Aug 15;86(4):1481–1486. [PubMed] [Google Scholar]
  55. Tanner M. M., Tirkkonen M., Kallioniemi A., Collins C., Stokke T., Karhu R., Kowbel D., Shadravan F., Hintz M., Kuo W. L. Increased copy number at 20q13 in breast cancer: defining the critical region and exclusion of candidate genes. Cancer Res. 1994 Aug 15;54(16):4257–4260. [PubMed] [Google Scholar]
  56. Tanner M. M., Tirkkonen M., Kallioniemi A., Isola J., Kuukasjärvi T., Collins C., Kowbel D., Guan X. Y., Trent J., Gray J. W. Independent amplification and frequent co-amplification of three nonsyntenic regions on the long arm of chromosome 20 in human breast cancer. Cancer Res. 1996 Aug 1;56(15):3441–3445. [PubMed] [Google Scholar]
  57. Visakorpi T., Kallioniemi A. H., Syvänen A. C., Hyytinen E. R., Karhu R., Tammela T., Isola J. J., Kallioniemi O. P. Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res. 1995 Jan 15;55(2):342–347. [PubMed] [Google Scholar]
  58. Voorter C., Joos S., Bringuier P. P., Vallinga M., Poddighe P., Schalken J., du Manoir S., Ramaekers F., Lichter P., Hopman A. Detection of chromosomal imbalances in transitional cell carcinoma of the bladder by comparative genomic hybridization. Am J Pathol. 1995 Jun;146(6):1341–1354. [PMC free article] [PubMed] [Google Scholar]
  59. Wang M., Chen X. N., Shouse S., Manson J., Wu Q., Li R., Wrestler J., Noya D., Sun Z. G., Korenberg J. Construction and characterization of a human chromosome 2-specific BAC library. Genomics. 1994 Dec;24(3):527–534. doi: 10.1006/geno.1994.1662. [DOI] [PubMed] [Google Scholar]
  60. Zeki K., Spambalg D., Sharifi N., Gonsky R., Fagin J. A. Mutations of the adenomatous polyposis coli gene in sporadic thyroid neoplasms. J Clin Endocrinol Metab. 1994 Nov;79(5):1317–1321. doi: 10.1210/jcem.79.5.7962323. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES