Abstract
X-linked hypohidrotic ectodermal dysplasia (XLHED), the most common of the ectodermal dysplasias, results in the abnormal development of teeth, hair, and eccrine sweat glands. The gene responsible for this disorder, EDA1, was identified by isolation of a single cDNA that was predicted to encode a 135-amino-acid protein. Mutations in this splice form were detected in <10% of families with XLHED. The subsequent cloning of the murine homologue of the EDA1 gene (Tabby [Ta]) allowed us to identify a second putative isoform of the EDA1 protein (isoform II) in humans. This EDA1 cDNA is predicted to encode a 391-residue protein, of which 256 amino acids are encoded by the new exons. The putative protein is 94% identical to the Ta protein and includes a collagen-like domain with 19 repeats of a Gly-X-Y motif in the presumptive extracellular domain. The genomic structure of the EDA1 gene was established, and the complete sequence of the seven new exons was determined in 18 XLHED-affected males. Putative mutations, including 12 missense, one nonsense, and four deletion mutations, were identified in approximately 95% of the families. The results suggest that EDA1 isoform II plays a critical role in tooth, hair, and sweat gland morphogenesis, whereas the biological significance of isoform I remains unclear. Identification of mutations in nearly all of the XLHED families studied suggests that direct molecular diagnosis of the disorder is feasible. Direct diagnosis will allow carrier detection in families with a single affected male and will assist in distinguishing XLHED from the rarer, clinically indistinguishable, autosomal recessive form of the disorder.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acton S., Resnick D., Freeman M., Ekkel Y., Ashkenas J., Krieger M. The collagenous domains of macrophage scavenger receptors and complement component C1q mediate their similar, but not identical, binding specificities for polyanionic ligands. J Biol Chem. 1993 Feb 15;268(5):3530–3537. [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Arnold C., Hodgson I. J. Vectorette PCR: a novel approach to genomic walking. PCR Methods Appl. 1991 Aug;1(1):39–42. doi: 10.1101/gr.1.1.39. [DOI] [PubMed] [Google Scholar]
- Arte S., Nieminen P., Pirinen S., Thesleff I., Peltonen L. Gene defect in hypodontia: exclusion of EGF, EGFR, and FGF-3 as candidate genes. J Dent Res. 1996 Jun;75(6):1346–1352. doi: 10.1177/00220345960750060401. [DOI] [PubMed] [Google Scholar]
- Brodsky B., Shah N. K. Protein motifs. 8. The triple-helix motif in proteins. FASEB J. 1995 Dec;9(15):1537–1546. doi: 10.1096/fasebj.9.15.8529832. [DOI] [PubMed] [Google Scholar]
- Clarke A. Hypohidrotic ectodermal dysplasia. J Med Genet. 1987 Nov;24(11):659–663. doi: 10.1136/jmg.24.11.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clarke A., Phillips D. I., Brown R., Harper P. S. Clinical aspects of X-linked hypohidrotic ectodermal dysplasia. Arch Dis Child. 1987 Oct;62(10):989–996. doi: 10.1136/adc.62.10.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ezer S., Schlessinger D., Srivastava A., Kere J. Anhidrotic ectodermal dysplasia (EDA) protein expressed in MCF-7 cells associates with cell membrane and induces rounding. Hum Mol Genet. 1997 Sep;6(9):1581–1587. doi: 10.1093/hmg/6.9.1581. [DOI] [PubMed] [Google Scholar]
- Ferguson B. M., Brockdorff N., Formstone E., Ngyuen T., Kronmiller J. E., Zonana J. Cloning of Tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain. Hum Mol Genet. 1997 Sep;6(9):1589–1594. doi: 10.1093/hmg/6.9.1589. [DOI] [PubMed] [Google Scholar]
- Ferguson B. M., Thomas N. S., Munoz F., Morgan D., Clarke A., Zonana J. Scarcity of mutations detected in families with X linked hypohidrotic ectodermal dysplasia: diagnostic implications. J Med Genet. 1998 Feb;35(2):112–115. doi: 10.1136/jmg.35.2.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gatalica B., Pulkkinen L., Li K., Kuokkanen K., Ryynänen M., McGrath J. A., Uitto J. Cloning of the human type XVII collagen gene (COL17A1), and detection of novel mutations in generalized atrophic benign epidermolysis bullosa. Am J Hum Genet. 1997 Feb;60(2):352–365. [PMC free article] [PubMed] [Google Scholar]
- Grompe M. The rapid detection of unknown mutations in nucleic acids. Nat Genet. 1993 Oct;5(2):111–117. doi: 10.1038/ng1093-111. [DOI] [PubMed] [Google Scholar]
- Holbrook K. A. Structural abnormalities of the epidermally derived appendages in skin from patients with ectodermal dysplasia: insight into developmental errors. Birth Defects Orig Artic Ser. 1988;24(2):15–44. [PubMed] [Google Scholar]
- Kere J., Srivastava A. K., Montonen O., Zonana J., Thomas N., Ferguson B., Munoz F., Morgan D., Clarke A., Baybayan P. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet. 1996 Aug;13(4):409–416. doi: 10.1038/ng0895-409. [DOI] [PubMed] [Google Scholar]
- Liu Q., Feng J., Sommer S. S. Bi-directional dideoxy fingerprinting (Bi-ddF): a rapid method for quantitative detection of mutations in genomic regions of 300-600 bp. Hum Mol Genet. 1996 Jan;5(1):107–114. doi: 10.1093/hmg/5.1.107. [DOI] [PubMed] [Google Scholar]
- Munoz F., Lestringant G., Sybert V., Frydman M., Alswaini A., Frossard P. M., Jorgenson R., Zonana J. Definitive evidence for an autosomal recessive form of hypohidrotic ectodermal dysplasia clinically indistinguishable from the more common X-linked disorder. Am J Hum Genet. 1997 Jul;61(1):94–100. doi: 10.1086/513905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pearson W. R. Using the FASTA program to search protein and DNA sequence databases. Methods Mol Biol. 1994;24:307–331. doi: 10.1385/0-89603-246-9:307. [DOI] [PubMed] [Google Scholar]
- Peltonen S., Rehn M., Pihlajaniemi T. Alternative splicing of mouse alpha1(XIII) collagen RNAs results in at least 17 different transcripts, predicting alpha1(XIII) collagen chains with length varying between 651 and 710 amino acid residues. DNA Cell Biol. 1997 Feb;16(2):227–234. doi: 10.1089/dna.1997.16.227. [DOI] [PubMed] [Google Scholar]
- Pinheiro M., Freire-Maia N. Christ-Siemens-Touraine syndrome--a clinical and genetic analysis of a large Brazilian kindred: I. Affected females. Am J Med Genet. 1979;4(2):113–122. doi: 10.1002/ajmg.1320040202. [DOI] [PubMed] [Google Scholar]
- Rohrer L., Freeman M., Kodama T., Penman M., Krieger M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature. 1990 Feb 8;343(6258):570–572. doi: 10.1038/343570a0. [DOI] [PubMed] [Google Scholar]
- Sheffield V. C., Beck J. S., Kwitek A. E., Sandstrom D. W., Stone E. M. The sensitivity of single-strand conformation polymorphism analysis for the detection of single base substitutions. Genomics. 1993 May;16(2):325–332. doi: 10.1006/geno.1993.1193. [DOI] [PubMed] [Google Scholar]
- Srivastava A. K., Montonen O., Saarialho-Kere U., Chen E., Baybayan P., Pispa J., Limon J., Schlessinger D., Kere J. Fine mapping of the EDA gene: a translocation breakpoint is associated with a CpG island that is transcribed. Am J Hum Genet. 1996 Jan;58(1):126–132. [PMC free article] [PubMed] [Google Scholar]
- Srivastava A. K., Pispa J., Hartung A. J., Du Y., Ezer S., Jenks T., Shimada T., Pekkanen M., Mikkola M. L., Ko M. S. The Tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13069–13074. doi: 10.1073/pnas.94.24.13069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zonana J., Clarke A., Sarfarazi M., Thomas N. S., Roberts K., Marymee K., Harper P. S. X-linked hypohidrotic ectodermal dysplasia: localization within the region Xq11-21.1 by linkage analysis and implications for carrier detection and prenatal diagnosis. Am J Hum Genet. 1988 Jul;43(1):75–85. [PMC free article] [PubMed] [Google Scholar]
- Zonana J. Hypohidrotic (anhidrotic) ectodermal dysplasia: molecular genetic research and its clinical applications. Semin Dermatol. 1993 Sep;12(3):241–246. [PubMed] [Google Scholar]
- Zonana J., Jones M., Browne D., Litt M., Kramer P., Becker H. W., Brockdorff N., Rastan S., Davies K. P., Clarke A. High-resolution mapping of the X-linked hypohidrotic ectodermal dysplasia (EDA) locus. Am J Hum Genet. 1992 Nov;51(5):1036–1046. [PMC free article] [PubMed] [Google Scholar]
- Zonana J., Jones M., Clarke A., Gault J., Muller B., Thomas N. S. Detection of de novo mutations and analysis of their origin in families with X linked hypohidrotic ectodermal dysplasia. J Med Genet. 1994 Apr;31(4):287–292. doi: 10.1136/jmg.31.4.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zonana J., Sarfarazi M., Thomas N. S., Clarke A., Marymee K., Harper P. S. Improved definition of carrier status in X-linked hypohidrotic ectodermal dysplasia by use of restriction fragment length polymorphism-based linkage analysis. J Pediatr. 1989 Mar;114(3):392–399. doi: 10.1016/s0022-3476(89)80556-6. [DOI] [PubMed] [Google Scholar]