Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Oct;63(4):1153–1159. doi: 10.1086/302041

A chromosomal deletion map of human malformations.

C Brewer 1, S Holloway 1, P Zawalnyski 1, A Schinzel 1, D FitzPatrick 1
PMCID: PMC1377474  PMID: 9758599

Abstract

Malformations are common causes of pediatric morbidity and mortality, and genetic factors are a significant component of their etiology. Autosomal deletions, in almost all cases, cause a nonspecific embryopathy that presents after birth as growth failure, mental retardation, and multiple malformations. We have constructed a chromosome map of autosomal deletions associated with 47 different congenital malformations, using detailed clinical and cytogenetic information on 1,753 patients with nonmosaic single contiguous autosomal deletions. The 1,753 deletions involved 258 (89%) of 289 possible autosomal bands (by the use of ISCN 400-band nomenclature), giving a total of 4,190 deleted autosomal bands for analysis. We compared the band distributions of deletions associated with common major malformations with the distribution of all 1,753 deletions. We noted 283 positive associations between deleted bands and specific malformations, of which 199 were significant (P<.05, P>.001) and 84 were highly significant (P<.001). These "malformation-associated bands" (MABs) were distributed among 137 malformation-associated chromosome regions (MACRs). An average of 6 MABs in 2.9 MACRs were detected per malformation studied; 18 (6%) of 283 MABs contain a locus known to be associated with the particular malformation. A further 18 (6%) of 283 are in seven recognized specific malformation-associated aneuploid regions. Therefore, 36 (26%) of 137 of the MACRs contain an MAB coinciding with a previously recognized locus or malformation-associated aneuploid region. This map should facilitate identification of genes important in human development.

Full Text

The Full Text of this article is available as a PDF (493.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballabio A. Contiguous deletion syndromes. Curr Opin Genet Dev. 1991 Jun;1(1):25–29. doi: 10.1016/0959-437x(91)80036-l. [DOI] [PubMed] [Google Scholar]
  2. Chung C. S., Myrianthopoulos N. C. Racial and prenatal factors in major congenital malformations. Am J Hum Genet. 1968 Jan;20(1):44–60. [PMC free article] [PubMed] [Google Scholar]
  3. Epstein C. J. The conceptual bases for the phenotypic mapping of conditions resulting from aneuploidy. Prog Clin Biol Res. 1993;384:1–18. [PubMed] [Google Scholar]
  4. Ferguson-Smith M. A., Aitken D. A. The contribution of chromosome aberrations to the precision of human gene mapping. Cytogenet Cell Genet. 1982;32(1-4):24–42. doi: 10.1159/000131684. [DOI] [PubMed] [Google Scholar]
  5. FitzPatrick D. R., Skeoch C. H., Tolmie J. L. Genetic aspects of admissions to a paediatric intensive care unit. Arch Dis Child. 1991 May;66(5):639–641. doi: 10.1136/adc.66.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hall J. G., Powers E. K., Mcllvaine R. T., Ean V. H. The frequency and financial burden of genetic disease in a pediatric hospital. Am J Med Genet. 1978;1(4):417–436. doi: 10.1002/ajmg.1320010405. [DOI] [PubMed] [Google Scholar]
  7. Hogue C. J., Strauss L. T., Buehler J. W., Smith J. C. Overview of the National Infant Mortality Surveillance (NIMS) project. MMWR CDC Surveill Summ. 1989 Dec;38(3):1–46. [PubMed] [Google Scholar]
  8. Hrubec Z., Robinette C. D. The study of human twins in medical research. N Engl J Med. 1984 Feb 16;310(7):435–441. doi: 10.1056/NEJM198402163100706. [DOI] [PubMed] [Google Scholar]
  9. Jacobs P. A., Browne C., Gregson N., Joyce C., White H. Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet. 1992 Feb;29(2):103–108. doi: 10.1136/jmg.29.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jordan T., Hanson I., Zaletayev D., Hodgson S., Prosser J., Seawright A., Hastie N., van Heyningen V. The human PAX6 gene is mutated in two patients with aniridia. Nat Genet. 1992 Aug;1(5):328–332. doi: 10.1038/ng0892-328. [DOI] [PubMed] [Google Scholar]
  11. Kalter H., Warkany J. Congenital malformations (second of two parts). N Engl J Med. 1983 Mar 3;308(9):491–497. doi: 10.1056/NEJM198303033080904. [DOI] [PubMed] [Google Scholar]
  12. Khoury M. J., Beaty T. H., Liang K. Y. Can familial aggregation of disease be explained by familial aggregation of environmental risk factors? Am J Epidemiol. 1988 Mar;127(3):674–683. doi: 10.1093/oxfordjournals.aje.a114842. [DOI] [PubMed] [Google Scholar]
  13. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lurie I. W. Autosomal imbalance syndromes: genetic interactions and the origin of congenital malformations in aneuploidy syndromes. Am J Med Genet. 1993 Sep 1;47(3):410–416. doi: 10.1002/ajmg.1320470323. [DOI] [PubMed] [Google Scholar]
  15. Lynch S. A., Bond P. M., Copp A. J., Kirwan W. O., Nour S., Balling R., Mariman E., Burn J., Strachan T. A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nat Genet. 1995 Sep;11(1):93–95. doi: 10.1038/ng0995-93. [DOI] [PubMed] [Google Scholar]
  16. Muenke M., Gurrieri F., Bay C., Yi D. H., Collins A. L., Johnson V. P., Hennekam R. C., Schaefer G. B., Weik L., Lubinsky M. S. Linkage of a human brain malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8102–8106. doi: 10.1073/pnas.91.17.8102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ringwald M., Baldock R., Bard J., Kaufman M., Eppig J. T., Richardson J. E., Nadeau J. H., Davidson D. A database for mouse development. Science. 1994 Sep 30;265(5181):2033–2034. doi: 10.1126/science.8091224. [DOI] [PubMed] [Google Scholar]
  18. Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
  19. Roessler E., Belloni E., Gaudenz K., Jay P., Berta P., Scherer S. W., Tsui L. C., Muenke M. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet. 1996 Nov;14(3):357–360. doi: 10.1038/ng1196-357. [DOI] [PubMed] [Google Scholar]
  20. Schedl A., Ross A., Lee M., Engelkamp D., Rashbass P., van Heyningen V., Hastie N. D. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell. 1996 Jul 12;86(1):71–82. doi: 10.1016/s0092-8674(00)80078-1. [DOI] [PubMed] [Google Scholar]
  21. Tommerup N., van der Hagen C. B., Heiberg A. Tentative assignment of a locus for Rubinstein-Taybi syndrome to 16p13.3 by a de novo reciprocal translocation, t(7;16)(q34;p13.3). Am J Med Genet. 1992 Sep 15;44(2):237–241. doi: 10.1002/ajmg.1320440223. [DOI] [PubMed] [Google Scholar]
  22. Vasarhelyi K., Friedman J. M. Analysing rearrangement breakpoint distributions by means of binomial confidence intervals. Ann Hum Genet. 1989 Oct;53(Pt 4):375–380. doi: 10.1111/j.1469-1809.1989.tb01805.x. [DOI] [PubMed] [Google Scholar]
  23. Wilkie A. O. The molecular basis of genetic dominance. J Med Genet. 1994 Feb;31(2):89–98. doi: 10.1136/jmg.31.2.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. You Y., Bergstrom R., Klemm M., Lederman B., Nelson H., Ticknor C., Jaenisch R., Schimenti J. Chromosomal deletion complexes in mice by radiation of embryonic stem cells. Nat Genet. 1997 Mar;15(3):285–288. doi: 10.1038/ng0397-285. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES