Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Oct;63(4):992–1000. doi: 10.1086/302070

Deletions in HOXD13 segregate with an identical, novel foot malformation in two unrelated families.

F Goodman 1, M L Giovannucci-Uzielli 1, C Hall 1, W Reardon 1, R Winter 1, P Scambler 1
PMCID: PMC1377502  PMID: 9758628

Abstract

Synpolydactyly (SPD) is a dominantly inherited congenital limb malformation consisting of 3/4 syndactyly in the hands and 4/5 syndactyly in the feet, with digit duplication in the syndactylous web. The condition recently has been found to result from different-sized expansions of an amino-terminal polyalanine tract in HOXD13. We report a novel type of mutation in HOXD13, associated in some cases with features of classic SPD and in all cases with a novel foot phenotype. In two unrelated families, each with a different intragenic deletion in HOXD13, all mutation carriers have a rudimentary extra digit between the first and second metatarsals and often between the fourth and fifth metatarsals as well. This phenotype has not been reported in any mice with genetic modifications of the HoxD gene cluster. The two different deletions affect the first exon and the homeobox, respectively, in each case producing frameshifts followed by a long stretch of novel sequence and a premature stop codon. Although the affected genes may encode proteins that exert a dominant negative or novel effect, they are most likely to act as null alleles. Either possibility has interesting implications for the role of HOXD13 in human autopod development.

Full Text

The Full Text of this article is available as a PDF (828.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akarsu A. N., Stoilov I., Yilmaz E., Sayli B. S., Sarfarazi M. Genomic structure of HOXD13 gene: a nine polyalanine duplication causes synpolydactyly in two unrelated families. Hum Mol Genet. 1996 Jul;5(7):945–952. doi: 10.1093/hmg/5.7.945. [DOI] [PubMed] [Google Scholar]
  2. Belgrader P., Cheng J., Zhou X., Stephenson L. S., Maquat L. E. Mammalian nonsense codons can be cis effectors of nuclear mRNA half-life. Mol Cell Biol. 1994 Dec;14(12):8219–8228. doi: 10.1128/mcb.14.12.8219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benson G. V., Nguyen T. H., Maas R. L. The expression pattern of the murine Hoxa-10 gene and the sequence recognition of its homeodomain reveal specific properties of Abdominal B-like genes. Mol Cell Biol. 1995 Mar;15(3):1591–1601. doi: 10.1128/mcb.15.3.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chariot A., Moreau L., Senterre G., Sobel M. E., Castronovo V. Retinoic acid induces three newly cloned HOXA1 transcripts in MCF7 breast cancer cells. Biochem Biophys Res Commun. 1995 Oct 13;215(2):713–720. doi: 10.1006/bbrc.1995.2522. [DOI] [PubMed] [Google Scholar]
  5. Copeland J. W., Nasiadka A., Dietrich B. H., Krause H. M. Patterning of the Drosophila embryo by a homeodomain-deleted Ftz polypeptide. Nature. 1996 Jan 11;379(6561):162–165. doi: 10.1038/379162a0. [DOI] [PubMed] [Google Scholar]
  6. Cross H. E., Lerberg D. B., McKusick V. A. Type II syndactyly. Am J Hum Genet. 1968 Jul;20(4):368–380. [PMC free article] [PubMed] [Google Scholar]
  7. Davis A. P., Capecchi M. R. A mutational analysis of the 5' HoxD genes: dissection of genetic interactions during limb development in the mouse. Development. 1996 Apr;122(4):1175–1185. doi: 10.1242/dev.122.4.1175. [DOI] [PubMed] [Google Scholar]
  8. Dollé P., Dierich A., LeMeur M., Schimmang T., Schuhbaur B., Chambon P., Duboule D. Disruption of the Hoxd-13 gene induces localized heterochrony leading to mice with neotenic limbs. Cell. 1993 Nov 5;75(3):431–441. doi: 10.1016/0092-8674(93)90378-4. [DOI] [PubMed] [Google Scholar]
  9. Edery P., Eng C., Munnich A., Lyonnet S. RET in human development and oncogenesis. Bioessays. 1997 May;19(5):389–395. doi: 10.1002/bies.950190506. [DOI] [PubMed] [Google Scholar]
  10. Fiering S., Epner E., Robinson K., Zhuang Y., Telling A., Hu M., Martin D. I., Enver T., Ley T. J., Groudine M. Targeted deletion of 5'HS2 of the murine beta-globin LCR reveals that it is not essential for proper regulation of the beta-globin locus. Genes Dev. 1995 Sep 15;9(18):2203–2213. doi: 10.1101/gad.9.18.2203. [DOI] [PubMed] [Google Scholar]
  11. Fujimoto S., Araki K., Chisaka O., Araki M., Takagi K., Yamamura K. Analysis of the murine Hoxa-9 cDNA: an alternatively spliced transcript encodes a truncated protein lacking the homeodomain. Gene. 1998 Mar 16;209(1-2):77–85. doi: 10.1016/s0378-1119(98)00014-6. [DOI] [PubMed] [Google Scholar]
  12. Goff D. J., Tabin C. J. Analysis of Hoxd-13 and Hoxd-11 misexpression in chick limb buds reveals that Hox genes affect both bone condensation and growth. Development. 1997 Feb;124(3):627–636. doi: 10.1242/dev.124.3.627. [DOI] [PubMed] [Google Scholar]
  13. Goodman F. R., Mundlos S., Muragaki Y., Donnai D., Giovannucci-Uzielli M. L., Lapi E., Majewski F., McGaughran J., McKeown C., Reardon W. Synpolydactyly phenotypes correlate with size of expansions in HOXD13 polyalanine tract. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7458–7463. doi: 10.1073/pnas.94.14.7458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hanson I. M., Seawright A., Hardman K., Hodgson S., Zaletayev D., Fekete G., van Heyningen V. PAX6 mutations in aniridia. Hum Mol Genet. 1993 Jul;2(7):915–920. doi: 10.1093/hmg/2.7.915. [DOI] [PubMed] [Google Scholar]
  15. Hong Y. S., Kim S. Y., Bhattacharya A., Pratt D. R., Hong W. K., Tainsky M. A. Structure and function of the HOX A1 human homeobox gene cDNA. Gene. 1995 Jul 4;159(2):209–214. doi: 10.1016/0378-1119(95)92712-g. [DOI] [PubMed] [Google Scholar]
  16. Hyduk D., Percival-Smith A. Genetic characterization of the homeodomain-independent activity of the Drosophila fushi tarazu gene product. Genetics. 1996 Feb;142(2):481–492. doi: 10.1093/genetics/142.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem. 1996;65:693–739. doi: 10.1146/annurev.bi.65.070196.003401. [DOI] [PubMed] [Google Scholar]
  18. Kalderon D. Protein degradation: de-ubiquitinate to decide your fate. Curr Biol. 1996 Jun 1;6(6):662–665. doi: 10.1016/s0960-9822(09)00443-6. [DOI] [PubMed] [Google Scholar]
  19. Maquat L. E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1995 Jul;1(5):453–465. [PMC free article] [PubMed] [Google Scholar]
  20. Mortlock D. P., Innis J. W. Mutation of HOXA13 in hand-foot-genital syndrome. Nat Genet. 1997 Feb;15(2):179–180. doi: 10.1038/ng0297-179. [DOI] [PubMed] [Google Scholar]
  21. Muragaki Y., Mundlos S., Upton J., Olsen B. R. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science. 1996 Apr 26;272(5261):548–551. doi: 10.1126/science.272.5261.548. [DOI] [PubMed] [Google Scholar]
  22. Nelson C. E., Morgan B. A., Burke A. C., Laufer E., DiMambro E., Murtaugh L. C., Gonzales E., Tessarollo L., Parada L. F., Tabin C. Analysis of Hox gene expression in the chick limb bud. Development. 1996 May;122(5):1449–1466. doi: 10.1242/dev.122.5.1449. [DOI] [PubMed] [Google Scholar]
  23. Olson E. N., Arnold H. H., Rigby P. W., Wold B. J. Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell. 1996 Apr 5;85(1):1–4. doi: 10.1016/s0092-8674(00)81073-9. [DOI] [PubMed] [Google Scholar]
  24. Pham C. T., MacIvor D. M., Hug B. A., Heusel J. W., Ley T. J. Long-range disruption of gene expression by a selectable marker cassette. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13090–13095. doi: 10.1073/pnas.93.23.13090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ramírez-Solis R., Zheng H., Whiting J., Krumlauf R., Bradley A. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell. 1993 Apr 23;73(2):279–294. doi: 10.1016/0092-8674(93)90229-j. [DOI] [PubMed] [Google Scholar]
  26. Rijli F. M., Chambon P. Genetic interactions of Hox genes in limb development: learning from compound mutants. Curr Opin Genet Dev. 1997 Aug;7(4):481–487. doi: 10.1016/s0959-437x(97)80074-3. [DOI] [PubMed] [Google Scholar]
  27. Rijli F. M., Dollé P., Fraulob V., LeMeur M., Chambon P. Insertion of a targeting construct in a Hoxd-10 allele can influence the control of Hoxd-9 expression. Dev Dyn. 1994 Dec;201(4):366–377. doi: 10.1002/aja.1002010408. [DOI] [PubMed] [Google Scholar]
  28. Sayli B. S., Akarsu A. N., Sayli U., Akhan O., Ceylaner S., Sarfarazi M. A large Turkish kindred with syndactyly type II (synpolydactyly). 1. Field investigation, clinical and pedigree data. J Med Genet. 1995 Jun;32(6):421–434. doi: 10.1136/jmg.32.6.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tassabehji M., Newton V. E., Liu X. Z., Brady A., Donnai D., Krajewska-Walasek M., Murday V., Norman A., Obersztyn E., Reardon W. The mutational spectrum in Waardenburg syndrome. Hum Mol Genet. 1995 Nov;4(11):2131–2137. doi: 10.1093/hmg/4.11.2131. [DOI] [PubMed] [Google Scholar]
  30. Willing M. C., Deschenes S. P., Slayton R. L., Roberts E. J. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. Am J Hum Genet. 1996 Oct;59(4):799–809. [PMC free article] [PubMed] [Google Scholar]
  31. Zákány J., Duboule D. Synpolydactyly in mice with a targeted deficiency in the HoxD complex. Nature. 1996 Nov 7;384(6604):69–71. doi: 10.1038/384069a0. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES