Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Nov;63(5):1404–1410. doi: 10.1086/302108

A Bedouin kindred with infantile nephronophthisis demonstrates linkage to chromosome 9 by homozygosity mapping.

N B Haider 1, R Carmi 1, H Shalev 1, V C Sheffield 1, D Landau 1
PMCID: PMC1377550  PMID: 9792867

Abstract

A novel type of infantile nephronophthisis was identified in an extended Bedouin family from Israel. This disease has an autosomal recessive mode of inheritance, with the phenotypic presentation ranging from a Potter-like syndrome to hyperechogenic kidneys, renal insufficiency, hypertension, and hyperkalemia. Affected individuals show rapid deterioration of kidney function, leading to end-stage renal failure within 3 years. Histopathologic examination of renal tissue revealed variable findings, ranging from infantile polycystic kidneys to chronic tubulointerstitial nephritis, fibrosis, and cortical microcysts. A known familial juvenile nephronophthisis locus on chromosome 2q13 and autosomal recessive polycystic kidney disease on chromosome 6p21.1-p12 were excluded by genetic linkage analysis. A genomewide screen for linkage was conducted by searching for a locus inherited by descent in all affected individuals. Pooled DNA samples from parents and unaffected siblings and individual DNA samples from four affected individuals were used as PCR templates with trinucleotide- and tetranucleotide-repeat polymorphic markers. Using this approach, we identified linkage to infantile nephronophthisis for markers on chromosome 9q22-31. The disorder maps to a 12.9-cM region flanked by markers D9S280 and GGAT3G09.

Full Text

The Full Text of this article is available as a PDF (451.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antignac C., Arduy C. H., Beckmann J. S., Benessy F., Gros F., Medhioub M., Hildebrandt F., Dufier J. L., Kleinknecht C., Broyer M. A gene for familial juvenile nephronophthisis (recessive medullary cystic kidney disease) maps to chromosome 2p. Nat Genet. 1993 Apr;3(4):342–345. doi: 10.1038/ng0493-342. [DOI] [PubMed] [Google Scholar]
  2. Bassam B. J., Caetano-Anollés G., Gresshoff P. M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 1991 Jul;196(1):80–83. doi: 10.1016/0003-2697(91)90120-i. [DOI] [PubMed] [Google Scholar]
  3. Chadwick B. P., Obermayr F., Frischauf A. M. FKHL15, a new human member of the forkhead gene family located on chromosome 9q22. Genomics. 1997 May 1;41(3):390–396. doi: 10.1006/geno.1997.4692. [DOI] [PubMed] [Google Scholar]
  4. Gagnadoux M. F., Bacri J. L., Broyer M., Habib R. Infantile chronic tubulo-interstitial nephritis with cortical microcysts: variant of nephronophthisis or new disease entity? Pediatr Nephrol. 1989 Jan;3(1):50–55. doi: 10.1007/BF00859626. [DOI] [PubMed] [Google Scholar]
  5. Gattone V. H., 2nd, MacNaughton K. A., Kraybill A. L. Murine autosomal recessive polycystic kidney disease with multiorgan involvement induced by the cpk gene. Anat Rec. 1996 Jul;245(3):488–499. doi: 10.1002/(SICI)1097-0185(199607)245:3<488::AID-AR5>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  6. Grossniklaus U., Pearson R. K., Gehring W. J. The Drosophila sloppy paired locus encodes two proteins involved in segmentation that show homology to mammalian transcription factors. Genes Dev. 1992 Jun;6(6):1030–1051. doi: 10.1101/gad.6.6.1030. [DOI] [PubMed] [Google Scholar]
  7. Guay-Woodford L. M., Muecher G., Hopkins S. D., Avner E. D., Germino G. G., Guillot A. P., Herrin J., Holleman R., Irons D. A., Primack W. The severe perinatal form of autosomal recessive polycystic kidney disease maps to chromosome 6p21.1-p12: implications for genetic counseling. Am J Hum Genet. 1995 May;56(5):1101–1107. [PMC free article] [PubMed] [Google Scholar]
  8. Hildebrandt F., Otto E., Rensing C., Nothwang H. G., Vollmer M., Adolphs J., Hanusch H., Brandis M. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat Genet. 1997 Oct;17(2):149–153. doi: 10.1038/ng1097-149. [DOI] [PubMed] [Google Scholar]
  9. Isdale J. M., Thomson P. D., Katz S. Infantile polycystic disease of the kidneys. S Afr Med J. 1973 Oct 13;47(40):1892–1896. [PubMed] [Google Scholar]
  10. Kaplan B. S., Fay J., Shah V., Dillon M. J., Barratt T. M. Autosomal recessive polycystic kidney disease. Pediatr Nephrol. 1989 Jan;3(1):43–49. doi: 10.1007/BF00859625. [DOI] [PubMed] [Google Scholar]
  11. LOKEN A. C., HANSSEN O., HALVORSEN S., JOLSTER N. J. Hereditary renal dysplasia and blindness. Acta Paediatr. 1961 Mar;50:177–184. doi: 10.1111/j.1651-2227.1961.tb08037.x. [DOI] [PubMed] [Google Scholar]
  12. LUNDIN P. M., OLOW I. Polycystic kidneys in newborns, infants and children. A clinical and pathological study. Acta Paediatr. 1961 Mar;50:185–200. doi: 10.1111/j.1651-2227.1961.tb08038.x. [DOI] [PubMed] [Google Scholar]
  13. Lander E. S., Botstein D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science. 1987 Jun 19;236(4808):1567–1570. doi: 10.1126/science.2884728. [DOI] [PubMed] [Google Scholar]
  14. Lange K., Weeks D., Boehnke M. Programs for Pedigree Analysis: MENDEL, FISHER, and dGENE. Genet Epidemiol. 1988;5(6):471–472. doi: 10.1002/gepi.1370050611. [DOI] [PubMed] [Google Scholar]
  15. Martinez J. R., Cowley B. D., Gattone V. H., 2nd, Nagao S., Yamaguchi T., Kaneta S., Takahashi H., Grantham J. J. The effect of paclitaxel on the progression of polycystic kidney disease in rodents. Am J Kidney Dis. 1997 Mar;29(3):435–444. doi: 10.1016/s0272-6386(97)90206-7. [DOI] [PubMed] [Google Scholar]
  16. Medhioub M., Cherif D., Benessy F., Silbermann F., Gubler M. C., Le Paslier D., Cohen D., Weissenbach J., Beckmann J., Antignac C. Refined mapping of a gene (NPH1) causing familial juvenile nephronophthisis and evidence for genetic heterogeneity. Genomics. 1994 Jul 15;22(2):296–301. doi: 10.1006/geno.1994.1387. [DOI] [PubMed] [Google Scholar]
  17. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Qamar I. U., Balfe J. W. Experience with chronic peritoneal dialysis in infants. Child Nephrol Urol. 1991;11(3):159–164. [PubMed] [Google Scholar]
  19. Schambelan M., Sebastian A., Biglieri E. G. Prevalence, pathogenesis, and functional significance of aldosterone deficiency in hyperkalemic patients with chronic renal insufficiency. Kidney Int. 1980 Jan;17(1):89–101. doi: 10.1038/ki.1980.11. [DOI] [PubMed] [Google Scholar]
  20. Schieren G., Pey R., Bach J., Hafner M., Gretz N. Murine models of polycystic kidney disease. Nephrol Dial Transplant. 1996;11 (Suppl 6):38–45. doi: 10.1093/ndt/11.supp6.38. [DOI] [PubMed] [Google Scholar]
  21. Senior B. Familial renal-retinal dystrophy. Am J Dis Child. 1973 Mar;125(3):442–447. doi: 10.1001/archpedi.1973.04160030094021. [DOI] [PubMed] [Google Scholar]
  22. Shaikewitz S. T., Chapman A. Autosomal recessive polycystic kidney disease: issues regarding the variability of clinical presentation. J Am Soc Nephrol. 1993 Jun;3(12):1858–1862. doi: 10.1681/ASN.V3121858. [DOI] [PubMed] [Google Scholar]
  23. Sheffield V. C., Weber J. L., Buetow K. H., Murray J. C., Even D. A., Wiles K., Gastier J. M., Pulido J. C., Yandava C., Sunden S. L. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet. 1995 Oct;4(10):1837–1844. doi: 10.1093/hmg/4.10.1837. [DOI] [PubMed] [Google Scholar]
  24. Strauss M. B., Sommers S. C. Medullary cystic disease and familial juvenile nephronophthisis. N Engl J Med. 1967 Oct 19;277(16):863–864. doi: 10.1056/NEJM196710192771606. [DOI] [PubMed] [Google Scholar]
  25. Sung L. A., Fan Y., Lin C. C. Gene assignment, expression, and homology of human tropomodulin. Genomics. 1996 May 15;34(1):92–96. doi: 10.1006/geno.1996.0245. [DOI] [PubMed] [Google Scholar]
  26. Walter M. A., Spillett D. J., Thomas P., Weissenbach J., Goodfellow P. N. A method for constructing radiation hybrid maps of whole genomes. Nat Genet. 1994 May;7(1):22–28. doi: 10.1038/ng0594-22. [DOI] [PubMed] [Google Scholar]
  27. Woo D. D., Nguyen D. K., Khatibi N., Olsen P. Genetic identification of two major modifier loci of polycystic kidney disease progression in pcy mice. J Clin Invest. 1997 Oct 15;100(8):1934–1940. doi: 10.1172/JCI119724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zerres K., Mücher G., Bachner L., Deschennes G., Eggermann T., Käriäinen H., Knapp M., Lennert T., Misselwitz J., von Mühlendahl K. E. Mapping of the gene for autosomal recessive polycystic kidney disease (ARPKD) to chromosome 6p21-cen. Nat Genet. 1994 Jul;7(3):429–432. doi: 10.1038/ng0794-429. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES