Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Nov;63(5):1425–1430. doi: 10.1086/302096

Autosomal dominant orthostatic hypotensive disorder maps to chromosome 18q.

A L DeStefano 1, C T Baldwin 1, M Burzstyn 1, I Gavras 1, D E Handy 1, O Joost 1, T Martel 1, M Nicolaou 1, F Schwartz 1, D H Streeten 1, L A Farrer 1, H Gavras 1
PMCID: PMC1377553  PMID: 9792870

Abstract

Familial orthostatic hypotensive disorder is characterized by light-headedness on standing, which may worsen to syncope, palpitations, and blue-purple ankle discoloration, and is accompanied by a marked decrease in systolic blood pressure, an increase in diastolic pressure, and tachycardia, all of which resolve when supine. We ascertained three families in which this disorder is inherited as an autosomal dominant trait with reduced penetrance. A genomewide scan was conducted in the two largest families, and three regions with multipoint LOD scores >1.5 were identified. Follow-up of these regions with additional markers in all three families yielded significant evidence of linkage at chromosome 18q. A maximum multipoint LOD score of 3.21 in the three families was observed at D18S1367, although the smallest family had negative LOD scores in the entire region. There was significant evidence of linkage in the presence of heterogeneity at 18q, with a maximum LOD score of 3.92 at D18S1367 in the two linked families. Identification of the gene responsible for orthostatic hypotensive disorder in these families may advance understanding of the general regulatory pathways involved in the continuum, from hypotension to hypertension, of blood pressure.

Full Text

The Full Text of this article is available as a PDF (330.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chang S. S., Grunder S., Hanukoglu A., Rösler A., Mathew P. M., Hanukoglu I., Schild L., Lu Y., Shimkets R. A., Nelson-Williams C. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet. 1996 Mar;12(3):248–253. doi: 10.1038/ng0396-248. [DOI] [PubMed] [Google Scholar]
  2. Hansson J. H., Nelson-Williams C., Suzuki H., Schild L., Shimkets R., Lu Y., Canessa C., Iwasaki T., Rossier B., Lifton R. P. Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet. 1995 Sep;11(1):76–82. doi: 10.1038/ng0995-76. [DOI] [PubMed] [Google Scholar]
  3. Julier C., Delépine M., Keavney B., Terwilliger J., Davis S., Weeks D. E., Bui T., Jeunemaître X., Velho G., Froguel P. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet. 1997 Nov;6(12):2077–2085. doi: 10.1093/hmg/6.12.2077. [DOI] [PubMed] [Google Scholar]
  4. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  5. O'Connell J. R., Weeks D. E. The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet. 1995 Dec;11(4):402–408. doi: 10.1038/ng1295-402. [DOI] [PubMed] [Google Scholar]
  6. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  7. Schneider S. S., Schick C., Fish K. E., Miller E., Pena J. C., Treter S. D., Hui S. M., Silverman G. A. A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3147–3151. doi: 10.1073/pnas.92.8.3147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sheffield V. C., Weber J. L., Buetow K. H., Murray J. C., Even D. A., Wiles K., Gastier J. M., Pulido J. C., Yandava C., Sunden S. L. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet. 1995 Oct;4(10):1837–1844. doi: 10.1093/hmg/4.10.1837. [DOI] [PubMed] [Google Scholar]
  9. Sims K. B., de la Chapelle A., Norio R., Sankila E. M., Hsu Y. P., Rinehart W. B., Corey T. J., Ozelius L., Powell J. F., Bruns G. Monoamine oxidase deficiency in males with an X chromosome deletion. Neuron. 1989 Jan;2(1):1069–1076. doi: 10.1016/0896-6273(89)90231-6. [DOI] [PubMed] [Google Scholar]
  10. Streeten D. H., Kerr C. B., Kerr L. P., Prior J. C., Dalakos T. G. Hyperbradykininism: a new orthostatic syndrome. Lancet. 1972 Nov 18;2(7786):1048–1053. doi: 10.1016/s0140-6736(72)92337-9. [DOI] [PubMed] [Google Scholar]
  11. Wu D. A., Bu X., Warden C. H., Shen D. D., Jeng C. Y., Sheu W. H., Fuh M. M., Katsuya T., Dzau V. J., Reaven G. M. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22. J Clin Invest. 1996 May 1;97(9):2111–2118. doi: 10.1172/JCI118648. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES