Abstract
Barth syndrome (BTHS) is a rare X-linked recessive disorder characterized by cardiac and skeletal myopathy, neutropenia, and short stature. A gene for BTHS, G4.5, was recently cloned and encodes several novel proteins, named "tafazzins." Unique mutations have been found. No correlation between the location or type of mutation and the phenotype of BTHS has been found. Female carriers of BTHS seem to be healthy. This could be due to a selection against cells that have the mutant allele on the active X chromosome. We therefore analyzed X chromosome inactivation in 16 obligate carriers of BTHS, from six families, using PCR in the androgen-receptor locus. An extremely skewed X-inactivation pattern (>=95:5), not found in 148 female controls, was found in six carriers. The skewed pattern in two carriers from one family was confirmed in DNA from cultured fibroblasts. Five carriers from two families had a skewed pattern (80:20-<95:5), a pattern that was found in only 11 of 148 female controls. Of the 11 carriers with a skewed pattern, the parental origin of the inactive X chromosome was maternal in all seven cases for which this could be determined. In two families, carriers with an extremely skewed pattern and carriers with a random pattern were found. The skewed X inactivation in 11 of 16 carriers is probably the result of a selection against cells with the mutated gene on the active X chromosome. Since BTHS also shows great clinical variation within families, additional factors are likely to influence the expression of the phenotype. Such factors may also influence the selection mechanism in carriers.
Full Text
The Full Text of this article is available as a PDF (411.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abkowitz J. L., Taboada M., Shelton G. H., Catlin S. N., Guttorp P., Kiklevich J. V. An X chromosome gene regulates hematopoietic stem cell kinetics. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3862–3866. doi: 10.1073/pnas.95.7.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adès L. C., Gedeon A. K., Wilson M. J., Latham M., Partington M. W., Mulley J. C., Nelson J., Lui K., Sillence D. O. Barth syndrome: clinical features and confirmation of gene localisation to distal Xq28. Am J Med Genet. 1993 Feb 1;45(3):327–334. doi: 10.1002/ajmg.1320450309. [DOI] [PubMed] [Google Scholar]
- Allen R. C., Nachtman R. G., Rosenblatt H. M., Belmont J. W. Application of carrier testing to genetic counseling for X-linked agammaglobulinemia. Am J Hum Genet. 1994 Jan;54(1):25–35. [PMC free article] [PubMed] [Google Scholar]
- Allen R. C., Zoghbi H. Y., Moseley A. B., Rosenblatt H. M., Belmont J. W. Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet. 1992 Dec;51(6):1229–1239. [PMC free article] [PubMed] [Google Scholar]
- Barth P. G., Scholte H. R., Berden J. A., Van der Klei-Van Moorsel J. M., Luyt-Houwen I. E., Van 't Veer-Korthof E. T., Van der Harten J. J., Sobotka-Plojhar M. A. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci. 1983 Dec;62(1-3):327–355. doi: 10.1016/0022-510x(83)90209-5. [DOI] [PubMed] [Google Scholar]
- Barth P. G., Van den Bogert C., Bolhuis P. A., Scholte H. R., van Gennip A. H., Schutgens R. B., Ketel A. G. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): respiratory-chain abnormalities in cultured fibroblasts. J Inherit Metab Dis. 1996;19(2):157–160. doi: 10.1007/BF01799418. [DOI] [PubMed] [Google Scholar]
- Belmont J. W. Genetic control of X inactivation and processes leading to X-inactivation skewing. Am J Hum Genet. 1996 Jun;58(6):1101–1108. [PMC free article] [PubMed] [Google Scholar]
- Bione S., D'Adamo P., Maestrini E., Gedeon A. K., Bolhuis P. A., Toniolo D. A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet. 1996 Apr;12(4):385–389. doi: 10.1038/ng0496-385. [DOI] [PubMed] [Google Scholar]
- Bleyl S. B., Mumford B. R., Thompson V., Carey J. C., Pysher T. J., Chin T. K., Ward K. Neonatal, lethal noncompaction of the left ventricular myocardium is allelic with Barth syndrome. Am J Hum Genet. 1997 Oct;61(4):868–872. doi: 10.1086/514879. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bolhuis P. A., Hensels G. W., Hulsebos T. J., Baas F., Barth P. G. Mapping of the locus for X-linked cardioskeletal myopathy with neutropenia and abnormal mitochondria (Barth syndrome) to Xq28. Am J Hum Genet. 1991 Mar;48(3):481–485. [PMC free article] [PubMed] [Google Scholar]
- Busque L., Mio R., Mattioli J., Brais E., Blais N., Lalonde Y., Maragh M., Gilliland D. G. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood. 1996 Jul 1;88(1):59–65. [PubMed] [Google Scholar]
- Christodoulou J., McInnes R. R., Jay V., Wilson G., Becker L. E., Lehotay D. C., Platt B. A., Bridge P. J., Robinson B. H., Clarke J. T. Barth syndrome: clinical observations and genetic linkage studies. Am J Med Genet. 1994 Apr 15;50(3):255–264. doi: 10.1002/ajmg.1320500309. [DOI] [PubMed] [Google Scholar]
- D'Adamo P., Fassone L., Gedeon A., Janssen E. A., Bione S., Bolhuis P. A., Barth P. G., Wilson M., Haan E., Orstavik K. H. The X-linked gene G4.5 is responsible for different infantile dilated cardiomyopathies. Am J Hum Genet. 1997 Oct;61(4):862–867. doi: 10.1086/514886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fearon E. R., Kohn D. B., Winkelstein J. A., Vogelstein B., Blaese R. M. Carrier detection in the Wiskott Aldrich syndrome. Blood. 1988 Nov;72(5):1735–1739. [PubMed] [Google Scholar]
- Fu Y. H., Kuhl D. P., Pizzuti A., Pieretti M., Sutcliffe J. S., Richards S., Verkerk A. J., Holden J. J., Fenwick R. G., Jr, Warren S. T. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox. Cell. 1991 Dec 20;67(6):1047–1058. doi: 10.1016/0092-8674(91)90283-5. [DOI] [PubMed] [Google Scholar]
- Gale R. E., Fielding A. K., Harrison C. N., Linch D. C. Acquired skewing of X-chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age. Br J Haematol. 1997 Sep;98(3):512–519. doi: 10.1046/j.1365-2141.1997.2573078.x. [DOI] [PubMed] [Google Scholar]
- Gibbons R. J., Suthers G. K., Wilkie A. O., Buckle V. J., Higgs D. R. X-linked alpha-thalassemia/mental retardation (ATR-X) syndrome: localization to Xq12-q21.31 by X inactivation and linkage analysis. Am J Hum Genet. 1992 Nov;51(5):1136–1149. [PMC free article] [PubMed] [Google Scholar]
- Johnston J., Kelley R. I., Feigenbaum A., Cox G. F., Iyer G. S., Funanage V. L., Proujansky R. Mutation characterization and genotype-phenotype correlation in Barth syndrome. Am J Hum Genet. 1997 Nov;61(5):1053–1058. doi: 10.1086/301604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LYON M. F. Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature. 1961 Apr 22;190:372–373. doi: 10.1038/190372a0. [DOI] [PubMed] [Google Scholar]
- Lindenbaum R. H., Andrews P. S., Khan A. S. Two cases of endocardial fibroelastosis--possible x-linked determination. Br Heart J. 1973 Jan;35(1):38–40. doi: 10.1136/hrt.35.1.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Migeon B. R. The postulated X-inactivation center at Xq27 is most reasonably explained by ascertainment bias: heterozygous expression of recessive mutations is a powerful means of detecting unbalanced X inactivation. Am J Hum Genet. 1993 Feb;52(2):431–434. [PMC free article] [PubMed] [Google Scholar]
- Naumova A. K., Plenge R. M., Bird L. M., Leppert M., Morgan K., Willard H. F., Sapienza C. Heritability of X chromosome--inactivation phenotype in a large family. Am J Hum Genet. 1996 Jun;58(6):1111–1119. [PMC free article] [PubMed] [Google Scholar]
- Neuwald A. F. Barth syndrome may be due to an acyltransferase deficiency. Curr Biol. 1997 Aug 1;7(8):R465–R466. doi: 10.1016/s0960-9822(06)00237-5. [DOI] [PubMed] [Google Scholar]
- Orstavik K. H., Orstavik R. E., Eiklid K., Tranebjaerg L. Inheritance of skewed X chromosome inactivation in a large family with an X-linked recessive deafness syndrome. Am J Med Genet. 1996 Jul 12;64(1):31–34. doi: 10.1002/(SICI)1096-8628(19960712)64:1<31::AID-AJMG4>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
- Orstavik K. H., Orstavik R. E., Halse J., Knudtzon J. X chromosome inactivation pattern in female carriers of X linked hypophosphataemic rickets. J Med Genet. 1996 Aug;33(8):700–703. doi: 10.1136/jmg.33.8.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orstavik K. H., Skjörten F., Hellebostad M., Hågå P., Langslet A. Possible X linked congenital mitochondrial cardiomyopathy in three families. J Med Genet. 1993 Apr;30(4):269–272. doi: 10.1136/jmg.30.4.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pegoraro E., Schimke R. N., Arahata K., Hayashi Y., Stern H., Marks H., Glasberg M. R., Carroll J. E., Taber J. W., Wessel H. B. Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females. Am J Hum Genet. 1994 Jun;54(6):989–1003. [PMC free article] [PubMed] [Google Scholar]
- Plenge R. M., Hendrich B. D., Schwartz C., Arena J. F., Naumova A., Sapienza C., Winter R. M., Willard H. F. A promoter mutation in the XIST gene in two unrelated families with skewed X-chromosome inactivation. Nat Genet. 1997 Nov;17(3):353–356. doi: 10.1038/ng1197-353. [DOI] [PubMed] [Google Scholar]
- Puck J. M., Willard H. F. X inactivation in females with X-linked disease. N Engl J Med. 1998 Jan 29;338(5):325–328. doi: 10.1056/NEJM199801293380611. [DOI] [PubMed] [Google Scholar]