Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Nov;63(5):1464–1472. doi: 10.1086/302092

Age-dependent inclusion of sex chromosomes in lymphocyte micronuclei of man.

J Catalán 1, K Autio 1, E Kuosma 1, H Norppa 1
PMCID: PMC1377558  PMID: 9792875

Abstract

Two-color centromeric FISH was used to study the inclusion of the X and Y chromosomes in micronuclei of cultured lymphocytes from 10 men representing two age groups (21-29 years and 51-55 years). In addition, pancentromeric FISH was separately performed to identify any human chromosomes in micronuclei. One hundred micronuclei per probe were examined from each donor. A higher mean frequency of Y-positive micronuclei was observed in the older men than in the younger men. In both age groups, the X chromosome was micronucleated clearly more often than expected by chance, and the Y chromosome was overrepresented in micronuclei among the older men but not among the younger men. In lymphocytes of four women, X-positive micronuclei were more frequent than they were in men, even after the fact that women have two X chromosomes was taken into account. Similar results were obtained in first-division lymphocytes identified by cytochalasin-B-induced cytokinesis block. In comparison with normal cells, these binucleate cells showed a higher frequency (per 1,000 nuclei) of X-positive micronuclei (in the older men) but a lower frequency of micronuclei harboring autosomes or acentric fragments. In conclusion, the results show that both the X chromosome and the Y chromosome are preferentially micronucleated in male lymphocytes, the Y chromosome only in older subjects. Although the X chromosome has a general tendency to be included in micronuclei, it is micronucleated much more often in women than in men, which is probably the main reason for the high micronucleus frequency in women that has been documented in many previous studies.

Full Text

The Full Text of this article is available as a PDF (418.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abruzzo M. A., Mayer M., Jacobs P. A. Aging and aneuploidy: evidence for the preferential involvement of the inactive X chromosome. Cytogenet Cell Genet. 1985;39(4):275–278. doi: 10.1159/000132157. [DOI] [PubMed] [Google Scholar]
  2. Bonassi S., Bolognesi C., Abbondandolo A., Barale R., Bigatti P., Camurri L., Dalpra L., De Ferrari M., Forni A., Lando C. Influence of sex on cytogenetic end points: evidence from a large human sample and review of the literature. Cancer Epidemiol Biomarkers Prev. 1995 Sep;4(6):671–679. [PubMed] [Google Scholar]
  3. Catalán J., Autio K., Wessman M., Lindholm C., Knuutila S., Sorsa M., Norppa H. Age-associated micronuclei containing centromeres and the X chromosome in lymphocytes of women. Cytogenet Cell Genet. 1995;68(1-2):11–16. doi: 10.1159/000133879. [DOI] [PubMed] [Google Scholar]
  4. Falck G., Catalán J., Norppa H. Influence of culture time on the frequency and contents of human lymphocyte micronuclei with and without cytochalasin B. Mutat Res. 1997 Aug 1;392(1-2):71–79. doi: 10.1016/s0165-1218(97)00046-3. [DOI] [PubMed] [Google Scholar]
  5. Fenech M., Morley A. A. Cytokinesis-block micronucleus method in human lymphocytes: effect of in vivo ageing and low dose X-irradiation. Mutat Res. 1986 Jul;161(2):193–198. doi: 10.1016/0027-5107(86)90010-2. [DOI] [PubMed] [Google Scholar]
  6. Fenech M., Neville S., Rinaldi J. Sex is an important variable affecting spontaneous micronucleus frequency in cytokinesis-blocked lymphocytes. Mutat Res. 1994 Oct-Dec;313(2-3):203–207. doi: 10.1016/0165-1161(94)90050-7. [DOI] [PubMed] [Google Scholar]
  7. Fitzgerald P. H. A mechanism of x chromosome aneuploidy in lymphocytes of aging women. Humangenetik. 1975 Jun 19;28(2):153–158. doi: 10.1007/BF00735748. [DOI] [PubMed] [Google Scholar]
  8. Fitzgerald P. H., McEwan C. M. Total aneuploidy and age-related sex chromosome aneuploidy in cultured lymphocytes of normal men and women. Hum Genet. 1977 Dec 23;39(3):329–337. doi: 10.1007/BF00295428. [DOI] [PubMed] [Google Scholar]
  9. Ford J. H., Schultz C. J., Correll A. T. Chromosome elimination in micronuclei: a common cause of hypoploidy. Am J Hum Genet. 1988 Nov;43(5):733–740. [PMC free article] [PubMed] [Google Scholar]
  10. Galloway S. M., Buckton K. E. Aneuploidy and ageing: chromosome studies on a random sample of the population using G-banding. Cytogenet Cell Genet. 1978;20(1-6):78–95. doi: 10.1159/000130842. [DOI] [PubMed] [Google Scholar]
  11. Ganguly B. B. Cell division, chromosomal damage and micronucleus formation in peripheral lymphocytes of healthy donors: related to donor's age. Mutat Res. 1993 Aug;295(3):135–148. doi: 10.1016/0921-8734(93)90015-u. [DOI] [PubMed] [Google Scholar]
  12. Guttenbach M., Koschorz B., Bernthaler U., Grimm T., Schmid M. Sex chromosome loss and aging: in situ hybridization studies on human interphase nuclei. Am J Hum Genet. 1995 Nov;57(5):1143–1150. [PMC free article] [PubMed] [Google Scholar]
  13. Guttenbach M., Schakowski R., Schmid M. Aneuploidy and ageing: sex chromosome exclusion into micronuclei. Hum Genet. 1994 Sep;94(3):295–298. doi: 10.1007/BF00208287. [DOI] [PubMed] [Google Scholar]
  14. Hando J. C., Nath J., Tucker J. D. Sex chromosomes, micronuclei and aging in women. Chromosoma. 1994 Jun;103(3):186–192. doi: 10.1007/BF00368011. [DOI] [PubMed] [Google Scholar]
  15. Hando J. C., Tucker J. D., Davenport M., Tepperberg J., Nath J. X chromosome inactivation and micronuclei in normal and Turner individuals. Hum Genet. 1997 Oct;100(5-6):624–628. doi: 10.1007/s004390050564. [DOI] [PubMed] [Google Scholar]
  16. Högstedt B., Akesson B., Axell K., Gullberg B., Mitelman F., Pero R. W., Skerfving S., Welinder H. Increased frequency of lymphocyte micronuclei in workers producing reinforced polyester resin with low exposure to styrene. Scand J Work Environ Health. 1983 Jun;9(3):241–246. doi: 10.5271/sjweh.2414. [DOI] [PubMed] [Google Scholar]
  17. JACOBS P. A., COURT BROWN W. M., DOLL R. Distribution of human chromosome counts in relation to age. Nature. 1961 Sep 16;191:1178–1180. doi: 10.1038/1911178a0. [DOI] [PubMed] [Google Scholar]
  18. Jacobs P., Dalton P., James R., Mosse K., Power M., Robinson D., Skuse D. Turner syndrome: a cytogenetic and molecular study. Ann Hum Genet. 1997 Nov;61(Pt 6):471–483. doi: 10.1046/j.1469-1809.1997.6160471.x. [DOI] [PubMed] [Google Scholar]
  19. Nakagome Y., Abe T., Misawa S., Takeshita T., Iinuma K. The "loss" of centromeres from chromosomes of aged women. Am J Hum Genet. 1984 Mar;36(2):398–404. [PMC free article] [PubMed] [Google Scholar]
  20. Narod S. A., Neri L., Risch H. A., Raman S. Lymphocyte micronuclei and sister chromatid exchanges among Canadian federal laboratory employees. Am J Ind Med. 1988;14(4):449–456. doi: 10.1002/ajim.4700140408. [DOI] [PubMed] [Google Scholar]
  21. Nath J., Tucker J. D., Hando J. C. Y chromosome aneuploidy, micronuclei, kinetochores and aging in men. Chromosoma. 1995 Jul;103(10):725–731. doi: 10.1007/BF00344234. [DOI] [PubMed] [Google Scholar]
  22. Norppa H., Renzi L., Lindholm C. Detection of whole chromosomes in micronuclei of cytokinesis-blocked human lymphocytes by antikinetochore staining and in situ hybridization. Mutagenesis. 1993 Nov;8(6):519–525. doi: 10.1093/mutage/8.6.519. [DOI] [PubMed] [Google Scholar]
  23. Richard F., Aurias A., Couturier J., Dutrillaux A. M., Flüry-Hérard A., Gerbault-Seureau M., Hoffschir F., Lamoliatte E., Lefrançois D., Lombard M. Aneuploidy in human lymphocytes: an extensive study of eight individuals of various ages. Mutat Res. 1993 Mar;295(2):71–80. doi: 10.1016/0921-8734(93)90003-l. [DOI] [PubMed] [Google Scholar]
  24. Richard F., Muleris M., Dutrillaux B. The frequency of micronuclei with X chromosome increases with age in human females. Mutat Res. 1994 Feb;316(1):1–7. doi: 10.1016/0921-8734(94)90002-7. [DOI] [PubMed] [Google Scholar]
  25. Scarpato R., Landini E., Migliore L. Acrocentric chromosome frequency in spontaneous human lymphocyte micronuclei, evaluated by dual-colour hybridization, is neither sex- nor age-related. Mutat Res. 1996 Dec;372(2):195–204. doi: 10.1016/s0027-5107(96)00139-x. [DOI] [PubMed] [Google Scholar]
  26. Stone J. F., Sandberg A. A. Sex chromosome aneuploidy and aging. Mutat Res. 1995 Oct;338(1-6):107–113. doi: 10.1016/0921-8734(95)00016-y. [DOI] [PubMed] [Google Scholar]
  27. Surrallés J., Falck G., Norppa H. In vivo cytogenetic damage revealed by FISH analysis of micronuclei in uncultured human T lymphocytes. Cytogenet Cell Genet. 1996;75(2-3):151–154. doi: 10.1159/000134467. [DOI] [PubMed] [Google Scholar]
  28. Surrallés J., Jeppesen P., Morrison H., Natarajan A. T. Analysis of loss of inactive X chromosomes in interphase cells. Am J Hum Genet. 1996 Nov;59(5):1091–1096. [PMC free article] [PubMed] [Google Scholar]
  29. Tucker J. D., Nath J., Hando J. C. Activation status of the X chromosome in human micronucleated lymphocytes. Hum Genet. 1996 Apr;97(4):471–475. doi: 10.1007/BF02267069. [DOI] [PubMed] [Google Scholar]
  30. Zijno A., Leopardi P., Marcon F., Crebelli R. Analysis of chromosome segregation by means of fluorescence in situ hybridization: application to cytokinesis-blocked human lymphocytes. Mutat Res. 1996 Dec;372(2):211–219. doi: 10.1016/s0027-5107(96)00141-8. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES