Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Dec;63(6):1641–1650. doi: 10.1086/302159

Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity.

H Mehenni 1, C Gehrig 1, J Nezu 1, A Oku 1, M Shimane 1, C Rossier 1, N Guex 1, J L Blouin 1, H S Scott 1, S E Antonarakis 1
PMCID: PMC1377635  PMID: 9837816

Abstract

Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease characterized by mucocutaneous pigmentation and hamartomatous polyps. There is an increased risk of benign and malignant tumors in the gastrointestinal tract and in extraintestinal tissues. One PJS locus has been mapped to chromosome 19p13.3; a second locus is suspected on chromosome 19q13.4 in a minority of families. The PJS gene on 19p13.3 has recently been cloned, and it encodes the serine/threonine kinase LKB1. The gene, which is ubiquitously expressed, is composed of 10 exons spanning 23 kb. Several LKB1 mutations have been reported in heterozygosity in PJS patients. In this study, we screened for LKB1 mutations in nine PJS families of American, Spanish, Portuguese, French, Turkish, and Indian origin and detected seven novel mutations. These included two frameshift mutations, one four-amino-acid deletion, two amino-acid substitutions, and two splicing errors. Expression of mutant LKB1 proteins (K78I, D176N, W308C, and L67P) and assessment of their autophosphorylation activity revealed a loss of the kinase activity in all of these mutants. These results provide direct evidence that the elimination of the kinase activity of LKB1 is probably responsible for the development of the PJS phenotypes. In two Indian families, we failed to detect any LKB1 mutation; in one of these families, we previously had detected linkage to markers on 19q13.3-4, which suggests locus heterogeneity of PJS. The elucidation of the molecular etiology of PJS and the positional cloning of the second potential PJS gene will further elucidate the involvement of kinases/phosphatases in the development of cancer-predisposing syndromes.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos C. I., Bali D., Thiel T. J., Anderson J. P., Gourley I., Frazier M. L., Lynch P. M., Luchtefeld M. A., Young A., McGarrity T. J. Fine mapping of a genetic locus for Peutz-Jeghers syndrome on chromosome 19p. Cancer Res. 1997 Sep 1;57(17):3653–3656. [PubMed] [Google Scholar]
  2. Avizienyte E., Roth S., Loukola A., Hemminki A., Lothe R. A., Stenwig A. E., Fosså S. D., Salovaara R., Aaltonen L. A. Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res. 1998 May 15;58(10):2087–2090. [PubMed] [Google Scholar]
  3. Bignell G. R., Barfoot R., Seal S., Collins N., Warren W., Stratton M. R. Low frequency of somatic mutations in the LKB1/Peutz-Jeghers syndrome gene in sporadic breast cancer. Cancer Res. 1998 Apr 1;58(7):1384–1386. [PubMed] [Google Scholar]
  4. Blundell T. L., Sibanda B. L., Sternberg M. J., Thornton J. M. Knowledge-based prediction of protein structures and the design of novel molecules. 1987 Mar 26-Apr 1Nature. 326(6111):347–352. doi: 10.1038/326347a0. [DOI] [PubMed] [Google Scholar]
  5. Eng C., Mulligan L. M. Mutations of the RET proto-oncogene in the multiple endocrine neoplasia type 2 syndromes, related sporadic tumours, and hirschsprung disease. Hum Mutat. 1997;9(2):97–109. doi: 10.1002/(SICI)1098-1004(1997)9:2<97::AID-HUMU1>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  6. Giardiello F. M., Welsh S. B., Hamilton S. R., Offerhaus G. J., Gittelsohn A. M., Booker S. V., Krush A. J., Yardley J. H., Luk G. D. Increased risk of cancer in the Peutz-Jeghers syndrome. N Engl J Med. 1987 Jun 11;316(24):1511–1514. doi: 10.1056/NEJM198706113162404. [DOI] [PubMed] [Google Scholar]
  7. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  8. Hanks S. K., Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995 May;9(8):576–596. [PubMed] [Google Scholar]
  9. Heierhorst J., Kobe B., Feil S. C., Parker M. W., Benian G. M., Weiss K. R., Kemp B. E. Ca2+/S100 regulation of giant protein kinases. Nature. 1996 Apr 18;380(6575):636–639. doi: 10.1038/380636a0. [DOI] [PubMed] [Google Scholar]
  10. Hemminki A., Markie D., Tomlinson I., Avizienyte E., Roth S., Loukola A., Bignell G., Warren W., Aminoff M., Höglund P. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998 Jan 8;391(6663):184–187. doi: 10.1038/34432. [DOI] [PubMed] [Google Scholar]
  11. Hemminki A., Tomlinson I., Markie D., Järvinen H., Sistonen P., Björkqvist A. M., Knuutila S., Salovaara R., Bodmer W., Shibata D. Localization of a susceptibility locus for Peutz-Jeghers syndrome to 19p using comparative genomic hybridization and targeted linkage analysis. Nat Genet. 1997 Jan;15(1):87–90. doi: 10.1038/ng0197-87. [DOI] [PubMed] [Google Scholar]
  12. Jenne D. E., Reimann H., Nezu J., Friedel W., Loff S., Jeschke R., Müller O., Back W., Zimmer M. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet. 1998 Jan;18(1):38–43. doi: 10.1038/ng0198-38. [DOI] [PubMed] [Google Scholar]
  13. Kinzler K. W., Vogelstein B. Landscaping the cancer terrain. Science. 1998 May 15;280(5366):1036–1037. doi: 10.1126/science.280.5366.1036. [DOI] [PubMed] [Google Scholar]
  14. Kobe B., Heierhorst J., Feil S. C., Parker M. W., Benian G. M., Weiss K. R., Kemp B. E. Giant protein kinases: domain interactions and structural basis of autoregulation. EMBO J. 1996 Dec 16;15(24):6810–6821. [PMC free article] [PubMed] [Google Scholar]
  15. Lawrie A. M., Noble M. E., Tunnah P., Brown N. R., Johnson L. N., Endicott J. A. Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2. Nat Struct Biol. 1997 Oct;4(10):796–801. doi: 10.1038/nsb1097-796. [DOI] [PubMed] [Google Scholar]
  16. Li J., Yen C., Liaw D., Podsypanina K., Bose S., Wang S. I., Puc J., Miliaresis C., Rodgers L., McCombie R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997 Mar 28;275(5308):1943–1947. doi: 10.1126/science.275.5308.1943. [DOI] [PubMed] [Google Scholar]
  17. Mehenni H., Blouin J. L., Radhakrishna U., Bhardwaj S. S., Bhardwaj K., Dixit V. B., Richards K. F., Bermejo-Fenoll A., Leal A. S., Raval R. C. Peutz-Jeghers syndrome: confirmation of linkage to chromosome 19p13.3 and identification of a potential second locus, on 19q13.4. Am J Hum Genet. 1997 Dec;61(6):1327–1334. doi: 10.1086/301644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakagawa H., Koyama K., Tanaka T., Miyoshi Y., Ando H., Baba S., Watatani M., Yasutomi M., Monden M., Nakamura Y. Localization of the gene responsible for Peutz-Jeghers syndrome within a 6-cM region of chromosome 19p13.3. Hum Genet. 1998 Feb;102(2):203–206. doi: 10.1007/s004390050678. [DOI] [PubMed] [Google Scholar]
  19. Olschwang S., Markie D., Seal S., Neale K., Phillips R., Cottrell S., Ellis I., Hodgson S., Zauber P., Spigelman A. Peutz-Jeghers disease: most, but not all, families are compatible with linkage to 19p13.3. J Med Genet. 1998 Jan;35(1):42–44. doi: 10.1136/jmg.35.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Padgett R. A., Grabowski P. J., Konarska M. M., Seiler S., Sharp P. A. Splicing of messenger RNA precursors. Annu Rev Biochem. 1986;55:1119–1150. doi: 10.1146/annurev.bi.55.070186.005351. [DOI] [PubMed] [Google Scholar]
  21. Peitsch M. C. ProMod and Swiss-Model: Internet-based tools for automated comparative protein modelling. Biochem Soc Trans. 1996 Feb;24(1):274–279. doi: 10.1042/bst0240274. [DOI] [PubMed] [Google Scholar]
  22. Ponder J. W., Richards F. M. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987 Feb 20;193(4):775–791. doi: 10.1016/0022-2836(87)90358-5. [DOI] [PubMed] [Google Scholar]
  23. Schmidt L., Duh F. M., Chen F., Kishida T., Glenn G., Choyke P., Scherer S. W., Zhuang Z., Lubensky I., Dean M. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet. 1997 May;16(1):68–73. doi: 10.1038/ng0597-68. [DOI] [PubMed] [Google Scholar]
  24. Spigelman A. D., Murday V., Phillips R. K. Cancer and the Peutz-Jeghers syndrome. Gut. 1989 Nov;30(11):1588–1590. doi: 10.1136/gut.30.11.1588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Steck P. A., Pershouse M. A., Jasser S. A., Yung W. K., Lin H., Ligon A. H., Langford L. A., Baumgard M. L., Hattier T., Davis T. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997 Apr;15(4):356–362. doi: 10.1038/ng0497-356. [DOI] [PubMed] [Google Scholar]
  26. Su J. Y., Erikson E., Maller J. L. Cloning and characterization of a novel serine/threonine protein kinase expressed in early Xenopus embryos. J Biol Chem. 1996 Jun 14;271(24):14430–14437. doi: 10.1074/jbc.271.24.14430. [DOI] [PubMed] [Google Scholar]
  27. Zheng J., Knighton D. R., ten Eyck L. F., Karlsson R., Xuong N., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry. 1993 Mar 9;32(9):2154–2161. doi: 10.1021/bi00060a005. [DOI] [PubMed] [Google Scholar]
  28. Zuo L., Weger J., Yang Q., Goldstein A. M., Tucker M. A., Walker G. J., Hayward N., Dracopoli N. C. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet. 1996 Jan;12(1):97–99. doi: 10.1038/ng0196-97. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES