Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Dec;63(6):1663–1674. doi: 10.1086/302163

Functional characterization of missense mutations in ATP7B: Wilson disease mutation or normal variant?

J R Forbes 1, D W Cox 1
PMCID: PMC1377638  PMID: 9837819

Abstract

Wilson disease is an autosomal recessive disorder of copper transport that causes hepatic and/or neurological disease resulting from copper accumulation in the liver and brain. The protein defective in this disorder is a putative copper-transporting P-type ATPase, ATP7B. More than 100 mutations have been identified in the ATP7B gene of patients with Wilson disease. To determine the effect of Wilson disease missense mutations on ATP7B function, we have developed a yeast complementation assay based on the ability of ATP7B to complement the high-affinity iron-uptake deficiency of the yeast mutant ccc2. We characterized missense mutations found in the predicted membrane-spanning segments of ATP7B. Ten mutations have been made in the ATP7B cDNA by site-directed mutagenesis: five Wilson disease missense mutations, two mutations originally classified as possible disease-causing mutations, two putative ATP7B normal variants, and mutation of the cysteine-proline-cysteine (CPC) motif conserved in heavy-metal-transporting P-type ATPases. All seven putative Wilson disease mutants tested were able to at least partially complement ccc2 mutant yeast, indicating that they retain some ability to transport copper. One mutation was a temperature-sensitive mutation that was able to complement ccc2 mutant yeast at 30 degreesC but was unable to complement at 37 degreesC. Mutation of the CPC motif resulted in a nonfunctional protein, which demonstrates that this motif is essential for copper transport by ATP7B. Of the two putative ATP7B normal variants tested, one resulted in a nonfunctional protein, which suggests that it is a disease-causing mutation.

Full Text

The Full Text of this article is available as a PDF (490.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., Sipe D. M., Kaplan J. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell. 1994 Jan 28;76(2):403–410. doi: 10.1016/0092-8674(94)90346-8. [DOI] [PubMed] [Google Scholar]
  2. Brown N. L., Rouch D. A., Lee B. T. Copper resistance determinants in bacteria. Plasmid. 1992 Jan;27(1):41–51. doi: 10.1016/0147-619x(92)90005-u. [DOI] [PubMed] [Google Scholar]
  3. Bull P. C., Cox D. W. Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet. 1994 Jul;10(7):246–252. doi: 10.1016/0168-9525(94)90172-4. [DOI] [PubMed] [Google Scholar]
  4. Bull P. C., Thomas G. R., Rommens J. M., Forbes J. R., Cox D. W. The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet. 1993 Dec;5(4):327–337. doi: 10.1038/ng1293-327. [DOI] [PubMed] [Google Scholar]
  5. Chuang L. M., Wu H. P., Jang M. H., Wang T. R., Sue W. C., Lin B. J., Cox D. W., Tai T. Y. High frequency of two mutations in codon 778 in exon 8 of the ATP7B gene in Taiwanese families with Wilson disease. J Med Genet. 1996 Jun;33(6):521–523. doi: 10.1136/jmg.33.6.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., Kaplan J., Klausner R. D. Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell. 1994 Jan 28;76(2):393–402. doi: 10.1016/0092-8674(94)90345-x. [DOI] [PubMed] [Google Scholar]
  7. Denning G. M., Anderson M. P., Amara J. F., Marshall J., Smith A. E., Welsh M. J. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature. 1992 Aug 27;358(6389):761–764. doi: 10.1038/358761a0. [DOI] [PubMed] [Google Scholar]
  8. Elble R. A simple and efficient procedure for transformation of yeasts. Biotechniques. 1992 Jul;13(1):18–20. [PubMed] [Google Scholar]
  9. Farrer L. A., Bowcock A. M., Hebert J. M., Bonné-Tamir B., Sternlieb I., Giagheddu M., St George-Hyslop P., Frydman M., Lössner J., Demelia L. Predictive testing for Wilson's disease using tightly linked and flanking DNA markers. Neurology. 1991 Jul;41(7):992–999. doi: 10.1212/wnl.41.7.992. [DOI] [PubMed] [Google Scholar]
  10. Figus A., Angius A., Loudianos G., Bertini C., Dessi V., Loi A., Deiana M., Lovicu M., Olla N., Sole G. Molecular pathology and haplotype analysis of Wilson disease in Mediterranean populations. Am J Hum Genet. 1995 Dec;57(6):1318–1324. [PMC free article] [PubMed] [Google Scholar]
  11. Gross J. B., Jr, Myers B. M., Kost L. J., Kuntz S. M., LaRusso N. F. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload. J Clin Invest. 1989 Jan;83(1):30–39. doi: 10.1172/JCI113873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hung I. H., Suzuki M., Yamaguchi Y., Yuan D. S., Klausner R. D., Gitlin J. D. Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae. J Biol Chem. 1997 Aug 22;272(34):21461–21466. doi: 10.1074/jbc.272.34.21461. [DOI] [PubMed] [Google Scholar]
  13. Iida M., Terada K., Sambongi Y., Wakabayashi T., Miura N., Koyama K., Futai M., Sugiyama T. Analysis of functional domains of Wilson disease protein (ATP7B) in Saccharomyces cerevisiae. FEBS Lett. 1998 May 29;428(3):281–285. doi: 10.1016/s0014-5793(98)00546-8. [DOI] [PubMed] [Google Scholar]
  14. Krawczak M., Cooper D. N. The human gene mutation database. Trends Genet. 1997 Mar;13(3):121–122. doi: 10.1016/s0168-9525(97)01068-8. [DOI] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Lin S. J., Pufahl R. A., Dancis A., O'Halloran T. V., Culotta V. C. A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem. 1997 Apr 4;272(14):9215–9220. [PubMed] [Google Scholar]
  17. Lutsenko S., Cooper M. J. Localization of the Wilson's disease protein product to mitochondria. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6004–6009. doi: 10.1073/pnas.95.11.6004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MacLennan D. H., Clarke D. M., Loo T. W., Skerjanc I. S. Site-directed mutagenesis of the Ca2+ ATPase of sarcoplasmic reticulum. Acta Physiol Scand Suppl. 1992;607:141–150. [PubMed] [Google Scholar]
  19. Murata Y., Yamakawa E., Iizuka T., Kodama H., Abe T., Seki Y., Kodama M. Failure of copper incorporation into ceruloplasmin in the Golgi apparatus of LEC rat hepatocytes. Biochem Biophys Res Commun. 1995 Apr 6;209(1):349–355. doi: 10.1006/bbrc.1995.1510. [DOI] [PubMed] [Google Scholar]
  20. Nanji M. S., Nguyen V. T., Kawasoe J. H., Inui K., Endo F., Nakajima T., Anezaki T., Cox D. W. Haplotype and mutation analysis in Japanese patients with Wilson disease. Am J Hum Genet. 1997 Jun;60(6):1423–1429. doi: 10.1086/515459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Payne A. S., Gitlin J. D. Functional expression of the menkes disease protein reveals common biochemical mechanisms among the copper-transporting P-type ATPases. J Biol Chem. 1998 Feb 6;273(6):3765–3770. doi: 10.1074/jbc.273.6.3765. [DOI] [PubMed] [Google Scholar]
  22. Payne A. S., Kelly E. J., Gitlin J. D. Functional expression of the Wilson disease protein reveals mislocalization and impaired copper-dependent trafficking of the common H1069Q mutation. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10854–10859. doi: 10.1073/pnas.95.18.10854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Petris M. J., Mercer J. F., Culvenor J. G., Lockhart P., Gleeson P. A., Camakaris J. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 1996 Nov 15;15(22):6084–6095. [PMC free article] [PubMed] [Google Scholar]
  24. Sambongi Y., Wakabayashi T., Yoshimizu T., Omote H., Oka T., Futai M. Caenorhabditis elegans cDNA for a Menkes/Wilson disease gene homologue and its function in a yeast CCC2 gene deletion mutant. J Biochem. 1997 Jun;121(6):1169–1175. doi: 10.1093/oxfordjournals.jbchem.a021711. [DOI] [PubMed] [Google Scholar]
  25. Schena M., Picard D., Yamamoto K. R. Vectors for constitutive and inducible gene expression in yeast. Methods Enzymol. 1991;194:389–398. doi: 10.1016/0076-6879(91)94029-c. [DOI] [PubMed] [Google Scholar]
  26. Schilsky M. L., Stockert R. J., Sternlieb I. Pleiotropic effect of LEC mutation: a rodent model of Wilson's disease. Am J Physiol. 1994 May;266(5 Pt 1):G907–G913. doi: 10.1152/ajpgi.1994.266.5.G907. [DOI] [PubMed] [Google Scholar]
  27. Silver S. Plasmid-determined metal resistance mechanisms: range and overview. Plasmid. 1992 Jan;27(1):1–3. doi: 10.1016/0147-619x(92)90001-q. [DOI] [PubMed] [Google Scholar]
  28. Solioz M., Vulpe C. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem Sci. 1996 Jul;21(7):237–241. [PubMed] [Google Scholar]
  29. Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science. 1996 Mar 15;271(5255):1552–1557. doi: 10.1126/science.271.5255.1552. [DOI] [PubMed] [Google Scholar]
  30. Tanzi R. E., Petrukhin K., Chernov I., Pellequer J. L., Wasco W., Ross B., Romano D. M., Parano E., Pavone L., Brzustowicz L. M. The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet. 1993 Dec;5(4):344–350. doi: 10.1038/ng1293-344. [DOI] [PubMed] [Google Scholar]
  31. Thomas G. R., Forbes J. R., Roberts E. A., Walshe J. M., Cox D. W. The Wilson disease gene: spectrum of mutations and their consequences. Nat Genet. 1995 Feb;9(2):210–217. doi: 10.1038/ng0295-210. [DOI] [PubMed] [Google Scholar]
  32. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Waldenström E., Lagerkvist A., Dahlman T., Westermark K., Landegren U. Efficient detection of mutations in Wilson disease by manifold sequencing. Genomics. 1996 Nov 1;37(3):303–309. doi: 10.1006/geno.1996.0564. [DOI] [PubMed] [Google Scholar]
  34. Yoshimizu T., Omote H., Wakabayashi T., Sambongi Y., Futai M. Essential Cys-Pro-Cys motif of Caenorhabditis elegans copper transport ATPase. Biosci Biotechnol Biochem. 1998 Jun;62(6):1258–1260. doi: 10.1271/bbb.62.1258. [DOI] [PubMed] [Google Scholar]
  35. Yuan D. S., Dancis A., Klausner R. D. Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem. 1997 Oct 10;272(41):25787–25793. doi: 10.1074/jbc.272.41.25787. [DOI] [PubMed] [Google Scholar]
  36. Yuan D. S., Stearman R., Dancis A., Dunn T., Beeler T., Klausner R. D. The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2632–2636. doi: 10.1073/pnas.92.7.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zubenko G. S., Mitchell A. P., Jones E. W. Mapping of the proteinase b structural gene PRB1, in Saccharomyces cerevisiae and identification of nonsense alleles within the locus. Genetics. 1980 Sep;96(1):137–146. doi: 10.1093/genetics/96.1.137. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES