Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1998 Dec;63(6):1703–1711. doi: 10.1086/302144

Multiple molecular mechanisms underlying subdiagnostic variants of Marfan syndrome.

R A Montgomery 1, M T Geraghty 1, E Bull 1, B D Gelb 1, M Johnson 1, I McIntosh 1, C A Francomano 1, H C Dietz 1
PMCID: PMC1377642  PMID: 9837823

Abstract

Mutations in the FBN1 gene, which encodes fibrillin-1, cause Marfan syndrome (MFS) and have been associated with a wide range of milder, overlap phenotypes. The factors that modulate phenotypic severity, both between and within families, remain to be determined. This study examines the relationship between the FBN1 genotype and phenotype in families with extremely mild phenotypes and in those that show striking clinical variation among apparently affected individuals. In one family, clinically similar but etiologically distinct disorders are segregating independently. In another, somatic mosaicism for a mutant FBN1 allele is associated with subdiagnostic manifestations, whereas germ-line transmission of the identical mutation causes severe and rapidly progressive disease. A third family cosegregates mild mitral valve prolapse syndrome with a mutation in FBN1 that can be functionally distinguished from those associated with the classic MFS phenotype. These data have immediate relevance for the diagnostic and prognostic counseling of patients and their family members.

Full Text

The Full Text of this article is available as a PDF (856.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoyama T., Francke U., Dietz H. C., Furthmayr H. Quantitative differences in biosynthesis and extracellular deposition of fibrillin in cultured fibroblasts distinguish five groups of Marfan syndrome patients and suggest distinct pathogenetic mechanisms. J Clin Invest. 1994 Jul;94(1):130–137. doi: 10.1172/JCI117298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beighton P., de Paepe A., Danks D., Finidori G., Gedde-Dahl T., Goodman R., Hall J. G., Hollister D. W., Horton W., McKusick V. A. International Nosology of Heritable Disorders of Connective Tissue, Berlin, 1986. Am J Med Genet. 1988 Mar;29(3):581–594. doi: 10.1002/ajmg.1320290316. [DOI] [PubMed] [Google Scholar]
  3. Corson G. M., Chalberg S. C., Dietz H. C., Charbonneau N. L., Sakai L. Y. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5' end. Genomics. 1993 Aug;17(2):476–484. doi: 10.1006/geno.1993.1350. [DOI] [PubMed] [Google Scholar]
  4. De Paepe A., Devereux R. B., Dietz H. C., Hennekam R. C., Pyeritz R. E. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet. 1996 Apr 24;62(4):417–426. doi: 10.1002/(SICI)1096-8628(19960424)62:4<417::AID-AJMG15>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  5. Dietz H. C., Cutting G. R., Pyeritz R. E., Maslen C. L., Sakai L. Y., Corson G. M., Puffenberger E. G., Hamosh A., Nanthakumar E. J., Curristin S. M. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991 Jul 25;352(6333):337–339. doi: 10.1038/352337a0. [DOI] [PubMed] [Google Scholar]
  6. Dietz H. C., McIntosh I., Sakai L. Y., Corson G. M., Chalberg S. C., Pyeritz R. E., Francomano C. A. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan syndrome. Genomics. 1993 Aug;17(2):468–475. doi: 10.1006/geno.1993.1349. [DOI] [PubMed] [Google Scholar]
  7. Dietz H. C., Pyeritz R. E. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet. 1995;4(Spec No):1799–1809. doi: 10.1093/hmg/4.suppl_1.1799. [DOI] [PubMed] [Google Scholar]
  8. Dietz H. C., Pyeritz R. E., Puffenberger E. G., Kendzior R. J., Jr, Corson G. M., Maslen C. L., Sakai L. Y., Francomano C. A., Cutting G. R. Marfan phenotype variability in a family segregating a missense mutation in the epidermal growth factor-like motif of the fibrillin gene. J Clin Invest. 1992 May;89(5):1674–1680. doi: 10.1172/JCI115766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dietz H. C., Valle D., Francomano C. A., Kendzior R. J., Jr, Pyeritz R. E., Cutting G. R. The skipping of constitutive exons in vivo induced by nonsense mutations. Science. 1993 Jan 29;259(5095):680–683. doi: 10.1126/science.8430317. [DOI] [PubMed] [Google Scholar]
  10. Downing A. K., Knott V., Werner J. M., Cardy C. M., Campbell I. D., Handford P. A. Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell. 1996 May 17;85(4):597–605. doi: 10.1016/s0092-8674(00)81259-3. [DOI] [PubMed] [Google Scholar]
  11. Eldadah Z. A., Brenn T., Furthmayr H., Dietz H. C. Expression of a mutant human fibrillin allele upon a normal human or murine genetic background recapitulates a Marfan cellular phenotype. J Clin Invest. 1995 Feb;95(2):874–880. doi: 10.1172/JCI117737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Handford P. A., Mayhew M., Baron M., Winship P. R., Campbell I. D., Brownlee G. G. Key residues involved in calcium-binding motifs in EGF-like domains. Nature. 1991 May 9;351(6322):164–167. doi: 10.1038/351164a0. [DOI] [PubMed] [Google Scholar]
  13. Hayward C., Porteous M. E., Brock D. J. A novel mutation in the fibrillin gene (FBN1) in familial arachnodactyly. Mol Cell Probes. 1994 Aug;8(4):325–327. doi: 10.1006/mcpr.1994.1045. [DOI] [PubMed] [Google Scholar]
  14. Kielty C. M., Shuttleworth C. A. The role of calcium in the organization of fibrillin microfibrils. FEBS Lett. 1993 Dec 27;336(2):323–326. doi: 10.1016/0014-5793(93)80829-j. [DOI] [PubMed] [Google Scholar]
  15. Knott V., Downing A. K., Cardy C. M., Handford P. Calcium binding properties of an epidermal growth factor-like domain pair from human fibrillin-1. J Mol Biol. 1996 Jan 12;255(1):22–27. doi: 10.1006/jmbi.1996.0003. [DOI] [PubMed] [Google Scholar]
  16. Maquat L. E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1995 Jul;1(5):453–465. [PMC free article] [PubMed] [Google Scholar]
  17. Nijbroek G., Sood S., McIntosh I., Francomano C. A., Bull E., Pereira L., Ramirez F., Pyeritz R. E., Dietz H. C. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons. Am J Hum Genet. 1995 Jul;57(1):8–21. [PMC free article] [PubMed] [Google Scholar]
  18. Pereira L., Andrikopoulos K., Tian J., Lee S. Y., Keene D. R., Ono R., Reinhardt D. P., Sakai L. Y., Biery N. J., Bunton T. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Nat Genet. 1997 Oct;17(2):218–222. doi: 10.1038/ng1097-218. [DOI] [PubMed] [Google Scholar]
  19. Pereira L., D'Alessio M., Ramirez F., Lynch J. R., Sykes B., Pangilinan T., Bonadio J. Genomic organization of the sequence coding for fibrillin, the defective gene product in Marfan syndrome. Hum Mol Genet. 1993 Jul;2(7):961–968. doi: 10.1093/hmg/2.7.961. [DOI] [PubMed] [Google Scholar]
  20. Pereira L., Levran O., Ramirez F., Lynch J. R., Sykes B., Pyeritz R. E., Dietz H. C. A molecular approach to the stratification of cardiovascular risk in families with Marfan's syndrome. N Engl J Med. 1994 Jul 21;331(3):148–153. doi: 10.1056/NEJM199407213310302. [DOI] [PubMed] [Google Scholar]
  21. Reinhardt D. P., Mechling D. E., Boswell B. A., Keene D. R., Sakai L. Y., Bächinger H. P. Calcium determines the shape of fibrillin. J Biol Chem. 1997 Mar 14;272(11):7368–7373. doi: 10.1074/jbc.272.11.7368. [DOI] [PubMed] [Google Scholar]
  22. Reinhardt D. P., Ono R. N., Sakai L. Y. Calcium stabilizes fibrillin-1 against proteolytic degradation. J Biol Chem. 1997 Jan 10;272(2):1231–1236. doi: 10.1074/jbc.272.2.1231. [DOI] [PubMed] [Google Scholar]
  23. Sakai L. Y., Keene D. R., Engvall E. Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J Cell Biol. 1986 Dec;103(6 Pt 1):2499–2509. doi: 10.1083/jcb.103.6.2499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Selander-Sunnerhagen M., Ullner M., Persson E., Teleman O., Stenflo J., Drakenberg T. How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem. 1992 Sep 25;267(27):19642–19649. doi: 10.2210/pdb1ccf/pdb. [DOI] [PubMed] [Google Scholar]
  25. Tilstra D. J., Li L., Potter K. A., Womack J., Byers P. H. Sequence of the coding region of the bovine fibrillin cDNA and localization to bovine chromosome 10. Genomics. 1994 Sep 15;23(2):480–485. doi: 10.1006/geno.1994.1527. [DOI] [PubMed] [Google Scholar]
  26. Wu Y. S., Bevilacqua V. L., Berg J. M. Fibrillin domain folding and calcium binding: significance to Marfan syndrome. Chem Biol. 1995 Feb;2(2):91–97. doi: 10.1016/1074-5521(95)90281-3. [DOI] [PubMed] [Google Scholar]
  27. Yin W., Smiley E., Germiller J., Sanguineti C., Lawton T., Pereira L., Ramirez F., Bonadio J. Primary structure and developmental expression of Fbn-1, the mouse fibrillin gene. J Biol Chem. 1995 Jan 27;270(4):1798–1806. doi: 10.1074/jbc.270.4.1798. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES