Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Jan;64(1):189–195. doi: 10.1086/302202

Localization of familial benign hypercalcemia, Oklahoma variant (FBHOk), to chromosome 19q13.

S E Lloyd 1, A A Pannett 1, P H Dixon 1, M P Whyte 1, R V Thakker 1
PMCID: PMC1377717  PMID: 9915958

Abstract

Calcium homeostasis by the kidneys and parathyroids is mediated by the calcium-sensing receptor (CaSR), which is located on 3q21-q24 and belongs to family C of the superfamily of G-protein coupled receptors that includes those for metabotropic glutamate, certain pheromones, and gamma-amino butyric acid (GABA-B). Inactivating CaSR mutations result in familial benign hypercalcemia (FBH), or familial hypocalciuric hypercalcemia (FHH), whereas activating mutations result in hypocalcemic hypercalciuria. However, not all FBH patients have CaSR mutations, which, together with the mapping of another FBH locus to 19p13.3, suggests that additional CaSRs or second messengers may be involved. These may be identified by positional cloning, and we therefore performed a genomewide search, using chromosome-specific sets of microsatellite polymorphisms, in an Oklahoma family with an FBH variant (FBHOk), for which linkage to 3q and 19p had been excluded. Linkage was established between FBHOk and eight chromosome 19q13 loci, with the highest LOD score, 6.67 (recombination fraction.00), obtained with D19S606. Recombinants further mapped FBHOk to a <12-cM interval flanked by D19S908 and D19S866. The calmodulin III gene is located within this interval, and DNA sequence analysis of the coding region, the 5' UTR, and part of the promoter region in an individual affected with FBHOk did not detect any abnormalities, thereby indicating that this gene is unlikely to be implicated in the etiology of FBHOk. This mapping of FBHOk to chromosome 19q13 will facilitate the identification of another CaSR or a mediator of calcium homeostasis.

Full Text

The Full Text of this article is available as a PDF (255.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashworth L. K., Batzer M. A., Brandriff B., Branscomb E., de Jong P., Garcia E., Garnes J. A., Gordon L. A., Lamerdin J. E., Lennon G. An integrated metric physical map of human chromosome 19. Nat Genet. 1995 Dec;11(4):422–427. doi: 10.1038/ng1295-422. [DOI] [PubMed] [Google Scholar]
  2. Bachs O., Agell N., Carafoli E. Calmodulin and calmodulin-binding proteins in the nucleus. Cell Calcium. 1994 Oct;16(4):289–296. doi: 10.1016/0143-4160(94)90092-2. [DOI] [PubMed] [Google Scholar]
  3. Bai M., Pearce S. H., Kifor O., Trivedi S., Stauffer U. G., Thakker R. V., Brown E. M., Steinmann B. In vivo and in vitro characterization of neonatal hyperparathyroidism resulting from a de novo, heterozygous mutation in the Ca2+-sensing receptor gene: normal maternal calcium homeostasis as a cause of secondary hyperparathyroidism in familial benign hypocalciuric hypercalcemia. J Clin Invest. 1997 Jan 1;99(1):88–96. doi: 10.1172/JCI119137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berchtold M. W., Egli R., Rhyner J. A., Hameister H., Strehler E. E. Localization of the human bona fide calmodulin genes CALM1, CALM2, and CALM3 to chromosomes 14q24-q31, 2p21.1-p21.3, and 19q13.2-q13.3. Genomics. 1993 May;16(2):461–465. doi: 10.1006/geno.1993.1211. [DOI] [PubMed] [Google Scholar]
  5. Birnbaumer M. Mutations and diseases of G protein coupled receptors. J Recept Signal Transduct Res. 1995 Jan-Mar;15(1-4):131–160. doi: 10.3109/10799899509045213. [DOI] [PubMed] [Google Scholar]
  6. Brown E. M. Mutations in the calcium-sensing receptor and their clinical implications. Horm Res. 1997;48(5):199–208. doi: 10.1159/000185516. [DOI] [PubMed] [Google Scholar]
  7. Chou Y. H., Brown E. M., Levi T., Crowe G., Atkinson A. B., Arnqvist H. J., Toss G., Fuleihan G. E., Seidman J. G., Seidman C. E. The gene responsible for familial hypocalciuric hypercalcemia maps to chromosome 3q in four unrelated families. Nat Genet. 1992 Jul;1(4):295–300. doi: 10.1038/ng0792-295. [DOI] [PubMed] [Google Scholar]
  8. Crivici A., Ikura M. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct. 1995;24:85–116. doi: 10.1146/annurev.bb.24.060195.000505. [DOI] [PubMed] [Google Scholar]
  9. Durocher F., Morissette J., Dufort I., Simard J., Luu-The V. Genetic linkage mapping of the dehydroepiandrosterone sulfotransferase (STD) gene on the chromosome 19q13.3 region. Genomics. 1995 Oct 10;29(3):781–783. doi: 10.1006/geno.1995.9935. [DOI] [PubMed] [Google Scholar]
  10. Gnegy M. E. Calmodulin: effects of cell stimuli and drugs on cellular activation. Prog Drug Res. 1995;45:33–65. doi: 10.1007/978-3-0348-7164-8_2. [DOI] [PubMed] [Google Scholar]
  11. Gyapay G., Morissette J., Vignal A., Dib C., Fizames C., Millasseau P., Marc S., Bernardi G., Lathrop M., Weissenbach J. The 1993-94 Généthon human genetic linkage map. Nat Genet. 1994 Jun;7(2 Spec No):246–339. doi: 10.1038/ng0694supp-246. [DOI] [PubMed] [Google Scholar]
  12. Heath H., 3rd, Jackson C. E., Otterud B., Leppert M. F. Genetic linkage analysis in familial benign (hypocalciuric) hypercalcemia: evidence for locus heterogeneity. Am J Hum Genet. 1993 Jul;53(1):193–200. [PMC free article] [PubMed] [Google Scholar]
  13. Hebert S. C., Brown E. M., Harris H. W. Role of the Ca(2+)-sensing receptor in divalent mineral ion homeostasis. J Exp Biol. 1997 Jan;200(Pt 2):295–302. doi: 10.1242/jeb.200.2.295. [DOI] [PubMed] [Google Scholar]
  14. Herrada G., Dulac C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell. 1997 Aug 22;90(4):763–773. doi: 10.1016/s0092-8674(00)80536-x. [DOI] [PubMed] [Google Scholar]
  15. Hinson T. K., Damodaran T. V., Chen J., Zhang X., Qumsiyeh M. B., Seldin M. F., Quarles L. D. Identification of putative transmembrane receptor sequences homologous to the calcium-sensing G-protein-coupled receptor. Genomics. 1997 Oct 15;45(2):279–289. doi: 10.1006/geno.1997.4943. [DOI] [PubMed] [Google Scholar]
  16. Kahn J., Walcheck B., Migaki G. I., Jutila M. A., Kishimoto T. K. Calmodulin regulates L-selectin adhesion molecule expression and function through a protease-dependent mechanism. Cell. 1998 Mar 20;92(6):809–818. doi: 10.1016/s0092-8674(00)81408-7. [DOI] [PubMed] [Google Scholar]
  17. Koller M., Schnyder B., Strehler E. E. Structural organization of the human CaMIII calmodulin gene. Biochim Biophys Acta. 1990 Oct 23;1087(2):180–189. doi: 10.1016/0167-4781(90)90203-e. [DOI] [PubMed] [Google Scholar]
  18. Lloyd S. E., Pearce S. H., Fisher S. E., Steinmeyer K., Schwappach B., Scheinman S. J., Harding B., Bolino A., Devoto M., Goodyer P. A common molecular basis for three inherited kidney stone diseases. Nature. 1996 Feb 1;379(6564):445–449. doi: 10.1038/379445a0. [DOI] [PubMed] [Google Scholar]
  19. Matsunami H., Buck L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell. 1997 Aug 22;90(4):775–784. doi: 10.1016/s0092-8674(00)80537-1. [DOI] [PubMed] [Google Scholar]
  20. McMurtry C. T., Schranck F. W., Walkenhorst D. A., Murphy W. A., Kocher D. B., Teitelbaum S. L., Rupich R. C., Whyte M. P. Significant developmental elevation in serum parathyroid hormone levels in a large kindred with familial benign (hypocalciuric) hypercalcemia. Am J Med. 1992 Sep;93(3):247–258. doi: 10.1016/0002-9343(92)90229-5. [DOI] [PubMed] [Google Scholar]
  21. Naito T., Saito Y., Yamamoto J., Nozaki Y., Tomura K., Hazama M., Nakanishi S., Brenner S. Putative pheromone receptors related to the Ca2+-sensing receptor in Fugu. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5178–5181. doi: 10.1073/pnas.95.9.5178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pearce S. H., Bai M., Quinn S. J., Kifor O., Brown E. M., Thakker R. V. Functional characterization of calcium-sensing receptor mutations expressed in human embryonic kidney cells. J Clin Invest. 1996 Oct 15;98(8):1860–1866. doi: 10.1172/JCI118987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pearce S. H., Trump D., Wooding C., Besser G. M., Chew S. L., Grant D. B., Heath D. A., Hughes I. A., Paterson C. R., Whyte M. P. Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J Clin Invest. 1995 Dec;96(6):2683–2692. doi: 10.1172/JCI118335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pearce S. H., Williamson C., Kifor O., Bai M., Coulthard M. G., Davies M., Lewis-Barned N., McCredie D., Powell H., Kendall-Taylor P. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med. 1996 Oct 10;335(15):1115–1122. doi: 10.1056/NEJM199610103351505. [DOI] [PubMed] [Google Scholar]
  25. Pearce S. H., Wooding C., Davies M., Tollefsen S. E., Whyte M. P., Thakker R. V. Calcium-sensing receptor mutations in familial hypocalciuric hypercalcaemia with recurrent pancreatitis. Clin Endocrinol (Oxf) 1996 Dec;45(6):675–680. doi: 10.1046/j.1365-2265.1996.750891.x. [DOI] [PubMed] [Google Scholar]
  26. Pollak M. R., Brown E. M., Chou Y. H., Hebert S. C., Marx S. J., Steinmann B., Levi T., Seidman C. E., Seidman J. G. Mutations in the human Ca(2+)-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell. 1993 Dec 31;75(7):1297–1303. doi: 10.1016/0092-8674(93)90617-y. [DOI] [PubMed] [Google Scholar]
  27. Pollak M. R., Brown E. M., Estep H. L., McLaine P. N., Kifor O., Park J., Hebert S. C., Seidman C. E., Seidman J. G. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet. 1994 Nov;8(3):303–307. doi: 10.1038/ng1194-303. [DOI] [PubMed] [Google Scholar]
  28. Reed P. W., Davies J. L., Copeman J. B., Bennett S. T., Palmer S. M., Pritchard L. E., Gough S. C., Kawaguchi Y., Cordell H. J., Balfour K. M. Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nat Genet. 1994 Jul;7(3):390–395. doi: 10.1038/ng0794-390. [DOI] [PubMed] [Google Scholar]
  29. Rhyner J. A., Ottiger M., Wicki R., Greenwood T. M., Strehler E. E. Structure of the human CALM1 calmodulin gene and identification of two CALM1-related pseudogenes CALM1P1 and CALM1P2. Eur J Biochem. 1994 Oct 1;225(1):71–82. doi: 10.1111/j.1432-1033.1994.00071.x. [DOI] [PubMed] [Google Scholar]
  30. Thakker R. V., Davies K. E., Whyte M. P., Wooding C., O'Riordan J. L. Mapping the gene causing X-linked recessive idiopathic hypoparathyroidism to Xq26-Xq27 by linkage studies. J Clin Invest. 1990 Jul;86(1):40–45. doi: 10.1172/JCI114712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Trump D., Whyte M. P., Wooding C., Pang J. T., Pearce S. H., Kocher D. B., Thakker R. V. Linkage studies in a kindred from Oklahoma, with familial benign (hypocalciuric) hypercalcaemia (FBH) and developmental elevations in serum parathyroid hormone levels, indicate a third locus for FBH. Hum Genet. 1995 Aug;96(2):183–187. doi: 10.1007/BF00207376. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES