Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Jan;64(1):268–280. doi: 10.1086/302189

A simulation study of the effects of assignment of prior identity-by-descent probabilities to unselected sib pairs, in covariance-structure modeling of a quantitative-trait locus.

C V Dolan 1, D I Boomsma 1, M C Neale 1
PMCID: PMC1377725  PMID: 9915966

Abstract

Sib pair-selection strategies, designed to identify the most informative sib pairs in order to detect a quantitative-trait locus (QTL), give rise to a missing-data problem in genetic covariance-structure modeling of QTL effects. After selection, phenotypic data are available for all sibs, but marker data-and, consequently, the identity-by-descent (IBD) probabilities-are available only in selected sib pairs. One possible solution to this missing-data problem is to assign prior IBD probabilities (i.e., expected values) to the unselected sib pairs. The effect of this assignment in genetic covariance-structure modeling is investigated in the present paper. Two maximum-likelihood approaches to estimation are considered, the pi-hat approach and the IBD-mixture approach. In the simulations, sample size, selection criteria, QTL-increaser allele frequency, and gene action are manipulated. The results indicate that the assignment of prior IBD probabilities results in serious estimation bias in the pi-hat approach. Bias is also present in the IBD-mixture approach, although here the bias is generally much smaller. The null distribution of the log-likelihood ratio (i.e., in absence of any QTL effect) does not follow the expected null distribution in the pi-hat approach after selection. In the IBD-mixture approach, the null distribution does agree with expectation.

Full Text

The Full Text of this article is available as a PDF (407.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almasy L., Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998 May;62(5):1198–1211. doi: 10.1086/301844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amos C. I. Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet. 1994 Mar;54(3):535–543. [PMC free article] [PubMed] [Google Scholar]
  3. Blackwelder W. C., Elston R. C. A comparison of sib-pair linkage tests for disease susceptibility loci. Genet Epidemiol. 1985;2(1):85–97. doi: 10.1002/gepi.1370020109. [DOI] [PubMed] [Google Scholar]
  4. Boomsma D. I., Dolan C. V. A comparison of power to detect a QTL in sib-pair data using multivariate phenotypes, mean phenotypes, and factor scores. Behav Genet. 1998 Sep;28(5):329–340. doi: 10.1023/a:1021665501312. [DOI] [PubMed] [Google Scholar]
  5. Cardon L. R., Fulker D. W. The power of interval mapping of quantitative trait loci, using selected sib pairs. Am J Hum Genet. 1994 Oct;55(4):825–833. [PMC free article] [PubMed] [Google Scholar]
  6. Carey G., Williamson J. Linkage analysis of quantitative traits: increased power by using selected samples. Am J Hum Genet. 1991 Oct;49(4):786–796. [PMC free article] [PubMed] [Google Scholar]
  7. Dolan C. V., Boomsma D. I. Optimal selection of sib pairs from random samples for linkage analysis of a QTL using the EDAC test. Behav Genet. 1998 May;28(3):197–206. doi: 10.1023/a:1021423214032. [DOI] [PubMed] [Google Scholar]
  8. Eaves L. J., Last K. A., Young P. A., Martin N. G. Model-fitting approaches to the analysis of human behaviour. Heredity (Edinb) 1978 Dec;41(3):249–320. doi: 10.1038/hdy.1978.101. [DOI] [PubMed] [Google Scholar]
  9. Eaves L. J., Neale M. C., Maes H. Multivariate multipoint linkage analysis of quantitative trait loci. Behav Genet. 1996 Sep;26(5):519–525. doi: 10.1007/BF02359757. [DOI] [PubMed] [Google Scholar]
  10. Eaves L., Meyer J. Locating human quantitative trait loci: guidelines for the selection of sibling pairs for genotyping. Behav Genet. 1994 Sep;24(5):443–455. doi: 10.1007/BF01076180. [DOI] [PubMed] [Google Scholar]
  11. Fulker D. W., Cherny S. S. An improved multipoint sib-pair analysis of quantitative traits. Behav Genet. 1996 Sep;26(5):527–532. doi: 10.1007/BF02359758. [DOI] [PubMed] [Google Scholar]
  12. Gershenfeld H. K., Neumann P. E., Mathis C., Crawley J. N., Li X., Paul S. M. Mapping quantitative trait loci for open-field behavior in mice. Behav Genet. 1997 May;27(3):201–210. doi: 10.1023/a:1025653812535. [DOI] [PubMed] [Google Scholar]
  13. Gu C., Todorov A., Rao D. C. Combining extremely concordant sibpairs with extremely discordant sibpairs provides a cost effective way to linkage analysis of quantitative trait loci. Genet Epidemiol. 1996;13(6):513–533. doi: 10.1002/(SICI)1098-2272(1996)13:6<513::AID-GEPI1>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  14. Haseman J. K., Elston R. C. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972 Mar;2(1):3–19. doi: 10.1007/BF01066731. [DOI] [PubMed] [Google Scholar]
  15. Kruglyak L., Lander E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet. 1995 Aug;57(2):439–454. [PMC free article] [PubMed] [Google Scholar]
  16. Martin N., Boomsma D., Machin G. A twin-pronged attack on complex traits. Nat Genet. 1997 Dec;17(4):387–392. doi: 10.1038/ng1297-387. [DOI] [PubMed] [Google Scholar]
  17. Neale M. C., Eaves L. J. Estimating and controlling for the effects of volunteer bias with pairs of relatives. Behav Genet. 1993 May;23(3):271–277. doi: 10.1007/BF01082466. [DOI] [PubMed] [Google Scholar]
  18. Neale M. C., Eaves L. J., Kendler K. S. The power of the classical twin study to resolve variation in threshold traits. Behav Genet. 1994 May;24(3):239–258. doi: 10.1007/BF01067191. [DOI] [PubMed] [Google Scholar]
  19. Risch N. J., Zhang H. Mapping quantitative trait loci with extreme discordant sib pairs: sampling considerations. Am J Hum Genet. 1996 Apr;58(4):836–843. [PMC free article] [PubMed] [Google Scholar]
  20. Risch N., Zhang H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science. 1995 Jun 16;268(5217):1584–1589. doi: 10.1126/science.7777857. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES