Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Feb;64(2):346–353. doi: 10.1086/302271

Biological implications of the DNA structures associated with disease-causing triplet repeats.

R R Sinden 1
PMCID: PMC1377743  PMID: 9973271

Full Text

The Full Text of this article is available as a PDF (243.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacolla A., Gellibolian R., Shimizu M., Amirhaeri S., Kang S., Ohshima K., Larson J. E., Harvey S. C., Stollar B. D., Wells R. D. Flexible DNA: genetically unstable CTG.CAG and CGG.CCG from human hereditary neuromuscular disease genes. J Biol Chem. 1997 Jul 4;272(27):16783–16792. doi: 10.1074/jbc.272.27.16783. [DOI] [PubMed] [Google Scholar]
  2. Baran N., Lapidot A., Manor H. Unusual sequence element found at the end of an amplicon. Mol Cell Biol. 1987 Jul;7(7):2636–2640. doi: 10.1128/mcb.7.7.2636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bianchi M. E., Beltrame M. Flexing DNA: HMG-box proteins and their partners. Am J Hum Genet. 1998 Dec;63(6):1573–1577. doi: 10.1086/302170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bidichandani S. I., Ashizawa T., Patel P. I. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am J Hum Genet. 1998 Jan;62(1):111–121. doi: 10.1086/301680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chastain P. D., Sinden R. R. CTG repeats associated with human genetic disease are inherently flexible. J Mol Biol. 1998 Jan 23;275(3):405–411. doi: 10.1006/jmbi.1997.1502. [DOI] [PubMed] [Google Scholar]
  6. Darlow J. M., Leach D. R. Secondary structures in d(CGG) and d(CCG) repeat tracts. J Mol Biol. 1998 Jan 9;275(1):3–16. doi: 10.1006/jmbi.1997.1453. [DOI] [PubMed] [Google Scholar]
  7. Godde J. S., Kass S. U., Hirst M. C., Wolffe A. P. Nucleosome assembly on methylated CGG triplet repeats in the fragile X mental retardation gene 1 promoter. J Biol Chem. 1996 Oct 4;271(40):24325–24328. doi: 10.1074/jbc.271.40.24325. [DOI] [PubMed] [Google Scholar]
  8. Kang S., Jaworski A., Ohshima K., Wells R. D. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat Genet. 1995 Jun;10(2):213–218. doi: 10.1038/ng0695-213. [DOI] [PubMed] [Google Scholar]
  9. Krahe R., Ashizawa T., Abbruzzese C., Roeder E., Carango P., Giacanelli M., Funanage V. L., Siciliano M. J. Effect of myotonic dystrophy trinucleotide repeat expansion on DMPK transcription and processing. Genomics. 1995 Jul 1;28(1):1–14. doi: 10.1006/geno.1995.1099. [DOI] [PubMed] [Google Scholar]
  10. Krasilnikov A. S., Panyutin I. G., Samadashwily G. M., Cox R., Lazurkin Y. S., Mirkin S. M. Mechanisms of triplex-caused polymerization arrest. Nucleic Acids Res. 1997 Apr 1;25(7):1339–1346. doi: 10.1093/nar/25.7.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mitas M. Trinucleotide repeats associated with human disease. Nucleic Acids Res. 1997 Jun 15;25(12):2245–2254. doi: 10.1093/nar/25.12.2245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ohshima K., Montermini L., Wells R. D., Pandolfo M. Inhibitory effects of expanded GAA.TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J Biol Chem. 1998 Jun 5;273(23):14588–14595. doi: 10.1074/jbc.273.23.14588. [DOI] [PubMed] [Google Scholar]
  13. Ohshima K., Wells R. D. Hairpin formation during DNA synthesis primer realignment in vitro in triplet repeat sequences from human hereditary disease genes. J Biol Chem. 1997 Jul 4;272(27):16798–16806. doi: 10.1074/jbc.272.27.16798. [DOI] [PubMed] [Google Scholar]
  14. Parsons M. A., Sinden R. R., Izban M. G. Transcriptional properties of RNA polymerase II within triplet repeat-containing DNA from the human myotonic dystrophy and fragile X loci. J Biol Chem. 1998 Oct 9;273(41):26998–27008. doi: 10.1074/jbc.273.41.26998. [DOI] [PubMed] [Google Scholar]
  15. Pearson C. E., Ewel A., Acharya S., Fishel R. A., Sinden R. R. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases. Hum Mol Genet. 1997 Jul;6(7):1117–1123. doi: 10.1093/hmg/6.7.1117. [DOI] [PubMed] [Google Scholar]
  16. Pearson C. E., Sinden R. R. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry. 1996 Apr 16;35(15):5041–5053. doi: 10.1021/bi9601013. [DOI] [PubMed] [Google Scholar]
  17. Pearson C. E., Wang Y. H., Griffith J. D., Sinden R. R. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res. 1998 Feb 1;26(3):816–823. doi: 10.1093/nar/26.3.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rao B. S., Manor H., Martin R. G. Pausing in simian virus 40 DNA replication by a sequence containing (dG-dA)27.(dT-dC)27. Nucleic Acids Res. 1988 Aug 25;16(16):8077–8094. doi: 10.1093/nar/16.16.8077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Samadashwily G. M., Raca G., Mirkin S. M. Trinucleotide repeats affect DNA replication in vivo. Nat Genet. 1997 Nov;17(3):298–304. doi: 10.1038/ng1197-298. [DOI] [PubMed] [Google Scholar]
  20. Schumacher S., Fuchs R. P., Bichara M. Expansion of CTG repeats from human disease genes is dependent upon replication mechanisms in Escherichia coli: the effect of long patch mismatch repair revisited. J Mol Biol. 1998 Jun 26;279(5):1101–1110. doi: 10.1006/jmbi.1998.1827. [DOI] [PubMed] [Google Scholar]
  21. Sinden R. R., Wells R. D. DNA structure, mutations, and human genetic disease. Curr Opin Biotechnol. 1992 Dec;3(6):612–622. doi: 10.1016/0958-1669(92)90005-4. [DOI] [PubMed] [Google Scholar]
  22. Sinden R. R., Zheng G. X., Brankamp R. G., Allen K. N. On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics. 1991 Dec;129(4):991–1005. doi: 10.1093/genetics/129.4.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Timchenko L. T. Myotonic dystrophy: the role of RNA CUG triplet repeats. Am J Hum Genet. 1999 Feb;64(2):360–364. doi: 10.1086/302268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Trinh T. Q., Sinden R. R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature. 1991 Aug 8;352(6335):544–547. doi: 10.1038/352544a0. [DOI] [PubMed] [Google Scholar]
  25. Usdin K. NGG-triplet repeats form similar intrastrand structures: implications for the triplet expansion diseases. Nucleic Acids Res. 1998 Sep 1;26(17):4078–4085. doi: 10.1093/nar/26.17.4078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wang Y. H., Gellibolian R., Shimizu M., Wells R. D., Griffith J. Long CCG triplet repeat blocks exclude nucleosomes: a possible mechanism for the nature of fragile sites in chromosomes. J Mol Biol. 1996 Nov 8;263(4):511–516. doi: 10.1006/jmbi.1996.0593. [DOI] [PubMed] [Google Scholar]
  27. Wang Y. H., Griffith J. Expanded CTG triplet blocks from the myotonic dystrophy gene create the strongest known natural nucleosome positioning elements. Genomics. 1995 Jan 20;25(2):570–573. doi: 10.1016/0888-7543(95)80061-p. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES