Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Feb;64(2):479–494. doi: 10.1086/302261

Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency.

B S Andresen 1, S Olpin 1, B J Poorthuis 1, H R Scholte 1, C Vianey-Saban 1, R Wanders 1, L Ijlst 1, A Morris 1, M Pourfarzam 1, K Bartlett 1, E R Baumgartner 1, J B deKlerk 1, L D Schroeder 1, T J Corydon 1, H Lund 1, V Winter 1, P Bross 1, L Bolund 1, N Gregersen 1
PMCID: PMC1377757  PMID: 9973285

Abstract

Very-long-chain acyl-CoA dehydrogenase (VLCAD) catalyzes the initial rate-limiting step in mitochondrial fatty acid beta-oxidation. VLCAD deficiency is clinically heterogenous, with three major phenotypes: a severe childhood form, with early onset, high mortality, and high incidence of cardiomyopathy; a milder childhood form, with later onset, usually with hypoketotic hypoglycemia as the main presenting feature, low mortality, and rare cardiomyopathy; and an adult form, with isolated skeletal muscle involvement, rhabdomyolysis, and myoglobinuria, usually triggered by exercise or fasting. To examine whether these different phenotypes are due to differences in the VLCAD genotype, we investigated 58 different mutations in 55 unrelated patients representing all known clinical phenotypes and correlated the mutation type with the clinical phenotype. Our results show a clear relationship between the nature of the mutation and the severity of disease. Patients with the severe childhood phenotype have mutations that result in no residual enzyme activity, whereas patients with the milder childhood and adult phenotypes have mutations that may result in residual enzyme activity. This clear genotype-phenotype relationship is in sharp contrast to what has been observed in medium-chain acyl-CoA dehydrogenase deficiency, in which no correlation between genotype and phenotype can be established.

Full Text

The Full Text of this article is available as a PDF (395.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amendt B. A., Greene C., Sweetman L., Cloherty J., Shih V., Moon A., Teel L., Rhead W. J. Short-chain acyl-coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients. J Clin Invest. 1987 May;79(5):1303–1309. doi: 10.1172/JCI112953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andresen B. S., Bross P., Jensen T. G., Winter V., Knudsen I., Kølvraa S., Jensen U. B., Bolund L., Duran M., Kim J. J. A rare disease-associated mutation in the medium-chain acyl-CoA dehydrogenase (MCAD) gene changes a conserved arginine, previously shown to be functionally essential in short-chain acyl-CoA dehydrogenase (SCAD). Am J Hum Genet. 1993 Sep;53(3):730–739. [PMC free article] [PubMed] [Google Scholar]
  3. Andresen B. S., Bross P., Udvari S., Kirk J., Gray G., Kmoch S., Chamoles N., Knudsen I., Winter V., Wilcken B. The molecular basis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in compound heterozygous patients: is there correlation between genotype and phenotype? Hum Mol Genet. 1997 May;6(5):695–707. doi: 10.1093/hmg/6.5.695. [DOI] [PubMed] [Google Scholar]
  4. Andresen B. S., Bross P., Vianey-Saban C., Divry P., Zabot M. T., Roe C. R., Nada M. A., Byskov A., Kruse T. A., Neve S. Cloning and characterization of human very-long-chain acyl-CoA dehydrogenase cDNA, chromosomal assignment of the gene and identification in four patients of nine different mutations within the VLCAD gene. Hum Mol Genet. 1996 Apr;5(4):461–472. doi: 10.1093/hmg/5.4.461. [DOI] [PubMed] [Google Scholar]
  5. Andresen B. S., Jensen T. G., Bross P., Knudsen I., Winter V., Kølvraa S., Bolund L., Ding J. H., Chen Y. T., Van Hove J. L. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene. Am J Hum Genet. 1994 Jun;54(6):975–988. [PMC free article] [PubMed] [Google Scholar]
  6. Andresen B. S., Knudsen I., Jensen P. K., Rasmussen K., Gregersen N. Two novel nonradioactive polymerase chain reaction-based assays of dried blood spots, genomic DNA, or whole cells for fast, reliable detection of Z and S mutations in the alpha 1-antitrypsin gene. Clin Chem. 1992 Oct;38(10):2100–2107. [PubMed] [Google Scholar]
  7. Andresen B. S., Vianey-Saban C., Bross P., Divry P., Roe C. R., Nada M. A., Knudsen I., Gregersen N. The mutational spectrum in very long-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis. 1996;19(2):169–172. doi: 10.1007/BF01799421. [DOI] [PubMed] [Google Scholar]
  8. Aoyama T., Souri M., Ueno I., Kamijo T., Yamaguchi S., Rhead W. J., Tanaka K., Hashimoto T. Cloning of human very-long-chain acyl-coenzyme A dehydrogenase and molecular characterization of its deficiency in two patients. Am J Hum Genet. 1995 Aug;57(2):273–283. [PMC free article] [PubMed] [Google Scholar]
  9. Aoyama T., Souri M., Ushikubo S., Kamijo T., Yamaguchi S., Kelley R. I., Rhead W. J., Uetake K., Tanaka K., Hashimoto T. Purification of human very-long-chain acyl-coenzyme A dehydrogenase and characterization of its deficiency in seven patients. J Clin Invest. 1995 Jun;95(6):2465–2473. doi: 10.1172/JCI117947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Aoyama T., Uchida Y., Kelley R. I., Marble M., Hofman K., Tonsgard J. H., Rhead W. J., Hashimoto T. A novel disease with deficiency of mitochondrial very-long-chain acyl-CoA dehydrogenase. Biochem Biophys Res Commun. 1993 Mar 31;191(3):1369–1372. doi: 10.1006/bbrc.1993.1368. [DOI] [PubMed] [Google Scholar]
  11. Bertrand C., Largillière C., Zabot M. T., Mathieu M., Vianey-Saban C. Very long chain acyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid oxidation in fibroblasts. Biochim Biophys Acta. 1993 Jan 22;1180(3):327–329. doi: 10.1016/0925-4439(93)90058-9. [DOI] [PubMed] [Google Scholar]
  12. Bonnefont J. P., Taroni F., Cavadini P., Cepanec C., Brivet M., Saudubray J. M., Leroux J. P., Demaugre F. Molecular analysis of carnitine palmitoyltransferase II deficiency with hepatocardiomuscular expression. Am J Hum Genet. 1996 May;58(5):971–978. [PMC free article] [PubMed] [Google Scholar]
  13. Bross P., Andresen B. S., Gregersen N. Impaired folding and subunit assembly as disease mechanism: the example of medium-chain acyl-CoA dehydrogenase deficiency. Prog Nucleic Acid Res Mol Biol. 1998;58:301–337. doi: 10.1016/s0079-6603(08)60040-9. [DOI] [PubMed] [Google Scholar]
  14. Bross P., Andresen B. S., Winter V., Kräutle F., Jensen T. G., Nandy A., Kølvraa S., Ghisla S., Bolund L., Gregersen N. Co-overexpression of bacterial GroESL chaperonins partly overcomes non-productive folding and tetramer assembly of E. coli-expressed human medium-chain acyl-CoA dehydrogenase (MCAD) carrying the prevalent disease-causing K304E mutation. Biochim Biophys Acta. 1993 Oct 20;1182(3):264–274. doi: 10.1016/0925-4439(93)90068-c. [DOI] [PubMed] [Google Scholar]
  15. Brown-Harrison M. C., Nada M. A., Sprecher H., Vianey-Saban C., Farquhar J., Jr, Gilladoga A. C., Roe C. R. Very long chain acyl-CoA dehydrogenase deficiency: successful treatment of acute cardiomyopathy. Biochem Mol Med. 1996 Jun;58(1):59–65. doi: 10.1006/bmme.1996.0033. [DOI] [PubMed] [Google Scholar]
  16. Corr P. B., Creer M. H., Yamada K. A., Saffitz J. E., Sobel B. E. Prophylaxis of early ventricular fibrillation by inhibition of acylcarnitine accumulation. J Clin Invest. 1989 Mar;83(3):927–936. doi: 10.1172/JCI113978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Costa C. G., Dorland L., de Almeida I. T., Jakobs C., Duran M., Poll-The B. T. The effect of fasting, long-chain triglyceride load and carnitine load on plasma long-chain acylcarnitine levels in mitochondrial very long-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis. 1998 Jun;21(4):391–399. doi: 10.1023/a:1005354624735. [DOI] [PubMed] [Google Scholar]
  18. Costa C. G., Struys E. A., Bootsma A., ten Brink H. J., Dorland L., Tavares de Almeida I., Duran M., Jakobs C. Quantitative analysis of plasma acylcarnitines using gas chromatography chemical ionization mass fragmentography. J Lipid Res. 1997 Jan;38(1):173–182. [PubMed] [Google Scholar]
  19. Coulondre C., Miller J. H., Farabaugh P. J., Gilbert W. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. doi: 10.1038/274775a0. [DOI] [PubMed] [Google Scholar]
  20. Desviat L. R., Pérez B., García M. J., Martínez-Pardo M., Baldellou A., Arena J., Sanjurjo P., Campistol J., Couce M. L., Fernández A. Relationship between mutation genotype and biochemical phenotype in a heterogeneous Spanish phenylketonuria population. Eur J Hum Genet. 1997 Jul-Aug;5(4):196–202. [PubMed] [Google Scholar]
  21. Fitzsimmons T. J., McRoberts J. A., Tachiki K. H., Pandol S. J. Acyl-coenzyme A causes Ca2+ release in pancreatic acinar cells. J Biol Chem. 1997 Dec 12;272(50):31435–31440. doi: 10.1074/jbc.272.50.31435. [DOI] [PubMed] [Google Scholar]
  22. Frerman F. E., Goodman S. I. Fluorometric assay of acyl-CoA dehydrogenases in normal and mutant human fibroblasts. Biochem Med. 1985 Feb;33(1):38–44. doi: 10.1016/0006-2944(85)90124-3. [DOI] [PubMed] [Google Scholar]
  23. Goodman S. I., Stein D. E., Schlesinger S., Christensen E., Schwartz M., Greenberg C. R., Elpeleg O. N. Glutaryl-CoA dehydrogenase mutations in glutaric acidemia (type I): review and report of thirty novel mutations. Hum Mutat. 1998;12(3):141–144. doi: 10.1002/(SICI)1098-1004(1998)12:3<141::AID-HUMU1>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  24. Gregersen N., Andresen B. S., Bross P., Winter V., Rüdiger N., Engst S., Christensen E., Kelly D., Strauss A. W., Kølvraa S. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: identification of a lys329 to glu mutation in the MCAD gene, and expression of inactive mutant enzyme protein in E. coli. Hum Genet. 1991 Apr;86(6):545–551. doi: 10.1007/BF00201539. [DOI] [PubMed] [Google Scholar]
  25. Gregersen N., Blakemore A. I., Winter V., Andresen B., Kølvraa S., Bolund L., Curtis D., Engel P. C. Specific diagnosis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in dried blood spots by a polymerase chain reaction (PCR) assay detecting a point-mutation (G985) in the MCAD gene. Clin Chim Acta. 1991 Nov 9;203(1):23–34. doi: 10.1016/0009-8981(91)90153-4. [DOI] [PubMed] [Google Scholar]
  26. Gregersen N., Winter V. S., Corydon M. J., Corydon T. J., Rinaldo P., Ribes A., Martinez G., Bennett M. J., Vianey-Saban C., Bhala A. Identification of four new mutations in the short-chain acyl-CoA dehydrogenase (SCAD) gene in two patients: one of the variant alleles, 511C-->T, is present at an unexpectedly high frequency in the general population, as was the case for 625G-->A, together conferring susceptibility to ethylmalonic aciduria. Hum Mol Genet. 1998 Apr;7(4):619–627. doi: 10.1093/hmg/7.4.619. [DOI] [PubMed] [Google Scholar]
  27. Gustafson S., Proper J. A., Bowie E. J., Sommer S. S. Parameters affecting the yield of DNA from human blood. Anal Biochem. 1987 Sep;165(2):294–299. doi: 10.1016/0003-2697(87)90272-7. [DOI] [PubMed] [Google Scholar]
  28. Hale D. E., Batshaw M. L., Coates P. M., Frerman F. E., Goodman S. I., Singh I., Stanley C. A. Long-chain acyl coenzyme A dehydrogenase deficiency: an inherited cause of nonketotic hypoglycemia. Pediatr Res. 1985 Jul;19(7):666–671. doi: 10.1203/00006450-198507000-00006. [DOI] [PubMed] [Google Scholar]
  29. IJlst L., Wanders R. J., Ushikubo S., Kamijo T., Hashimoto T. Molecular basis of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of the major disease-causing mutation in the alpha-subunit of the mitochondrial trifunctional protein. Biochim Biophys Acta. 1994 Dec 8;1215(3):347–350. doi: 10.1016/0005-2760(94)90064-7. [DOI] [PubMed] [Google Scholar]
  30. Indo Y., Coates P. M., Hale D. E., Tanaka K. Immunochemical characterization of variant long-chain acyl-CoA dehydrogenase in cultured fibroblasts from nine patients with long-chain acyl-CoA dehydrogenase deficiency. Pediatr Res. 1991 Sep;30(3):211–215. doi: 10.1203/00006450-199109000-00001. [DOI] [PubMed] [Google Scholar]
  31. Jensen T. G., Andresen B. S., Bross P., Jensen U. B., Holme E., Kølvraa S., Gregersen N., Bolund L. Expression of wild-type and mutant medium-chain acyl-CoA dehydrogenase (MCAD) cDNA in eucaryotic cells. Biochim Biophys Acta. 1992 Oct 13;1180(1):65–72. doi: 10.1016/0925-4439(92)90028-l. [DOI] [PubMed] [Google Scholar]
  32. Kayaalp E., Treacy E., Waters P. J., Byck S., Nowacki P., Scriver C. R. Human phenylalanine hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype-phenotype correlations. Am J Hum Genet. 1997 Dec;61(6):1309–1317. doi: 10.1086/301638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kim J. K., Wi J. K., Youn J. H. Plasma free fatty acids decrease insulin-stimulated skeletal muscle glucose uptake by suppressing glycolysis in conscious rats. Diabetes. 1996 Apr;45(4):446–453. doi: 10.2337/diab.45.4.446. [DOI] [PubMed] [Google Scholar]
  34. Kølvraa S., Gregersen N., Christensen E., Hobolth N. In vitro fibroblast studies in a patient with C6-C10-dicarboxylic aciduria: evidence for a defect in general acyl-CoA dehydrogenase. Clin Chim Acta. 1982 Nov 24;126(1):53–67. doi: 10.1016/0009-8981(82)90361-8. [DOI] [PubMed] [Google Scholar]
  35. Largillière C., Vianey-Saban C., Fontaine M., Bertrand C., Kacet N., Farriaux J. P. Mitochondrial very long chain acyl-CoA dehydrogenase deficiency--a new disorder of fatty acid oxidation. Arch Dis Child Fetal Neonatal Ed. 1995 Sep;73(2):F103–F105. doi: 10.1136/fn.73.2.f103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lehman T. C., Hale D. E., Bhala A., Thorpe C. An acyl-coenzyme A dehydrogenase assay utilizing the ferricenium ion. Anal Biochem. 1990 May 1;186(2):280–284. doi: 10.1016/0003-2697(90)90080-s. [DOI] [PubMed] [Google Scholar]
  37. Manning N. J., Olpin S. E., Pollitt R. J., Webley J. A comparison of [9,10-3H]palmitic and [9,10-3H]myristic acids for the detection of defects of fatty acid oxidation in intact cultured fibroblasts. J Inherit Metab Dis. 1990;13(1):58–68. doi: 10.1007/BF01799333. [DOI] [PubMed] [Google Scholar]
  38. Maquat L. E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1995 Jul;1(5):453–465. [PMC free article] [PubMed] [Google Scholar]
  39. Matsumoto T., Fejes-Toth G., Schwartz G. J. Postnatal differentiation of rabbit collecting duct intercalated cells. Pediatr Res. 1996 Jan;39(1):1–12. doi: 10.1203/00006450-199601000-00001. [DOI] [PubMed] [Google Scholar]
  40. McGarry J. D., Brown N. F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem. 1997 Feb 15;244(1):1–14. doi: 10.1111/j.1432-1033.1997.00001.x. [DOI] [PubMed] [Google Scholar]
  41. Merinero B., Pérez-Cerdá C., Garcia M. J., Gangoiti J., Font L. M., Garcia Silva M. T., Vianey-Saban C., Duran M., Ugarte M. Mitochondrial very long-chain acyl-CoA dehydrogenase deficiency with a mild clinical course. J Inherit Metab Dis. 1996;19(2):173–176. doi: 10.1007/BF01799422. [DOI] [PubMed] [Google Scholar]
  42. Millington D. S., Terada N., Chace D. H., Chen Y. T., Ding J. H., Kodo N., Roe C. R. The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Prog Clin Biol Res. 1992;375:339–354. [PubMed] [Google Scholar]
  43. Minetti C., Garavaglia B., Bado M., Invernizzi F., Bruno C., Rimoldi M., Pons R., Taroni F., Cordone G. Very-long-chain acyl-coenzyme A dehydrogenase deficiency in a child with recurrent myoglobinuria. Neuromuscul Disord. 1998 Feb;8(1):3–6. doi: 10.1016/s0960-8966(97)00121-1. [DOI] [PubMed] [Google Scholar]
  44. Nada M. A., Vianey-Saban C., Roe C. R., Ding J. H., Mathieu M., Wappner R. S., Bialer M. G., McGlynn J. A., Mandon G. Prenatal diagnosis of mitochondrial fatty acid oxidation defects. Prenat Diagn. 1996 Feb;16(2):117–124. doi: 10.1002/(SICI)1097-0223(199602)16:2<117::AID-PD820>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  45. Ogilvie I., Pourfarzam M., Jackson S., Stockdale C., Bartlett K., Turnbull D. M. Very long-chain acyl coenzyme A dehydrogenase deficiency presenting with exercise-induced myoglobinuria. Neurology. 1994 Mar;44(3 Pt 1):467–473. doi: 10.1212/wnl.44.3_part_1.467. [DOI] [PubMed] [Google Scholar]
  46. Olpin S. E., Manning N. J., Pollitt R. J., Clarke S. Improved detection of long-chain fatty acid oxidation defects in intact cells using [9,10-3H]oleic acid. J Inherit Metab Dis. 1997 Jul;20(3):415–419. doi: 10.1023/a:1005358802096. [DOI] [PubMed] [Google Scholar]
  47. Onkenhout W., Venizelos V., van der Poel P. F., van den Heuvel M. P., Poorthuis B. J. Identification and quantification of intermediates of unsaturated fatty acid metabolism in plasma of patients with fatty acid oxidation disorders. Clin Chem. 1995 Oct;41(10):1467–1474. [PubMed] [Google Scholar]
  48. Scholte H. R., Ross J. D., Blom W., Boonman A. M., van Diggelen O. P., Hall C. L., Huijmans J. G., Luyt-Houwen I. E., Kleijer W. J., de Klerk J. B. Assessment of deficiencies of fatty acyl-CoA dehydrogenases in fibroblasts, muscle and liver. J Inherit Metab Dis. 1992;15(3):347–352. doi: 10.1007/BF02435973. [DOI] [PubMed] [Google Scholar]
  49. Smelt A. H., Poorthuis B. J., Onkenhout W., Scholte H. R., Andresen B. S., van Duinen S. G., Gregersen N., Wintzen A. R. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset. Ann Neurol. 1998 Apr;43(4):540–544. doi: 10.1002/ana.410430422. [DOI] [PubMed] [Google Scholar]
  50. Souri M., Aoyama T., Cox G. F., Hashimoto T. Catalytic and FAD-binding residues of mitochondrial very long chain acyl-coenzyme A dehydrogenase. J Biol Chem. 1998 Feb 13;273(7):4227–4231. doi: 10.1074/jbc.273.7.4227. [DOI] [PubMed] [Google Scholar]
  51. Souri M., Aoyama T., Hoganson G., Hashimoto T. Very-long-chain acyl-CoA dehydrogenase subunit assembles to the dimer form on mitochondrial inner membrane. FEBS Lett. 1998 Apr 17;426(2):187–190. doi: 10.1016/s0014-5793(98)00343-3. [DOI] [PubMed] [Google Scholar]
  52. Souri M., Aoyama T., Orii K., Yamaguchi S., Hashimoto T. Mutation analysis of very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency: identification and characterization of mutant VLCAD cDNAs from four patients. Am J Hum Genet. 1996 Jan;58(1):97–106. [PMC free article] [PubMed] [Google Scholar]
  53. Strauss A. W., Powell C. K., Hale D. E., Anderson M. M., Ahuja A., Brackett J. C., Sims H. F. Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10496–10500. doi: 10.1073/pnas.92.23.10496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Straussberg R., Harel L., Varsano I., Elpeleg O. N., Shamir R., Amir J. Recurrent myoglobinuria as a presenting manifestation of very long chain acyl coenzyme A dehydrogenase deficiency. Pediatrics. 1997 Jun;99(6):894–896. doi: 10.1542/peds.99.6.894. [DOI] [PubMed] [Google Scholar]
  55. Tanaka K., Gregersen N., Ribes A., Kim J., Kølvraa S., Winter V., Eiberg H., Martinez G., Deufel T., Leifert B. A survey of the newborn populations in Belgium, Germany, Poland, Czech Republic, Hungary, Bulgaria, Spain, Turkey, and Japan for the G985 variant allele with haplotype analysis at the medium chain Acyl-CoA dehydrogenase gene locus: clinical and evolutionary consideration. Pediatr Res. 1997 Feb;41(2):201–209. doi: 10.1203/00006450-199702000-00008. [DOI] [PubMed] [Google Scholar]
  56. Taroni F., Verderio E., Dworzak F., Willems P. J., Cavadini P., DiDonato S. Identification of a common mutation in the carnitine palmitoyltransferase II gene in familial recurrent myoglobinuria patients. Nat Genet. 1993 Jul;4(3):314–320. doi: 10.1038/ng0793-314. [DOI] [PubMed] [Google Scholar]
  57. Verderio E., Cavadini P., Montermini L., Wang H., Lamantea E., Finocchiaro G., DiDonato S., Gellera C., Taroni F. Carnitine palmitoyltransferase II deficiency: structure of the gene and characterization of two novel disease-causing mutations. Hum Mol Genet. 1995 Jan;4(1):19–29. doi: 10.1093/hmg/4.1.19. [DOI] [PubMed] [Google Scholar]
  58. Vianey-Saban C., Divry P., Brivet M., Nada M., Zabot M. T., Mathieu M., Roe C. Mitochondrial very-long-chain acyl-coenzyme A dehydrogenase deficiency: clinical characteristics and diagnostic considerations in 30 patients. Clin Chim Acta. 1998 Jan 12;269(1):43–62. doi: 10.1016/s0009-8981(97)00185-x. [DOI] [PubMed] [Google Scholar]
  59. Yamaguchi S., Indo Y., Coates P. M., Hashimoto T., Tanaka K. Identification of very-long-chain acyl-CoA dehydrogenase deficiency in three patients previously diagnosed with long-chain acyl-CoA dehydrogenase deficiency. Pediatr Res. 1993 Jul;34(1):111–113. doi: 10.1203/00006450-199307000-00025. [DOI] [PubMed] [Google Scholar]
  60. Yokota I., Coates P. M., Hale D. E., Rinaldo P., Tanaka K. Molecular survey of a prevalent mutation, 985A-to-G transition, and identification of five infrequent mutations in the medium-chain Acyl-CoA dehydrogenase (MCAD) gene in 55 patients with MCAD deficiency. Am J Hum Genet. 1991 Dec;49(6):1280–1291. [PMC free article] [PubMed] [Google Scholar]
  61. Zhang Z. F., Kelly D. P., Kim J. J., Zhou Y. Q., Ogden M. L., Whelan A. J., Strauss A. W. Structural organization and regulatory regions of the human medium-chain acyl-CoA dehydrogenase gene. Biochemistry. 1992 Jan 14;31(1):81–89. doi: 10.1021/bi00116a013. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES