Abstract
Small low-density lipoprotein (LDL) particles are a genetically influenced coronary disease risk factor. Lipoprotein lipase (LpL) is a rate-limiting enzyme in the formation of LDL particles. The current study examined genetic linkage of LDL particle size to the LpL gene in five families with structural mutations in the LpL gene. LDL particle size was smaller among the heterozygous subjects, compared with controls. Among heterozygous subjects, 44% were classified as affected by LDL subclass phenotype B, compared with 8% of normal family members. Plasma triglyceride levels were significantly higher, and high-density lipoprotein cholesterol (HDL-C) levels were lower, in heterozygous subjects, compared with normal subjects, after age and sex adjustment. A highly significant LOD score of 6.24 at straight theta=0 was obtained for linkage of LDL particle size to the LpL gene, after adjustment of LDL particle size for within-genotype variance resulting from triglyceride and HDL-C. Failure to adjust for this variance led to only a modest positive LOD score of 1.54 at straight theta=0. Classifying small LDL particles as a qualitative trait (LDL subclass phenotype B) provided only suggestive evidence for linkage to the LpL gene (LOD=1. 65 at straight theta=0). Thus, use of the quantitative trait adjusted for within-genotype variance, resulting from physiologic covariates, was crucial for detection of significant evidence of linkage in this study. These results indicate that heterozygous LpL deficiency may be one cause of small LDL particles and may provide a potential mechanism for the increase in coronary disease seen in heterozygous LpL deficiency. This study also demonstrates a successful strategy of genotypic specific adjustment of complex traits in mapping a quantitative trait locus.
Full Text
The Full Text of this article is available as a PDF (266.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Austin M. A., Breslow J. L., Hennekens C. H., Buring J. E., Willett W. C., Krauss R. M. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA. 1988 Oct 7;260(13):1917–1921. [PubMed] [Google Scholar]
- Austin M. A., Brunzell J. D., Fitch W. L., Krauss R. M. Inheritance of low density lipoprotein subclass patterns in familial combined hyperlipidemia. Arteriosclerosis. 1990 Jul-Aug;10(4):520–530. doi: 10.1161/01.atv.10.4.520. [DOI] [PubMed] [Google Scholar]
- Austin M. A., Hokanson J. E., Brunzell J. D. Characterization of low-density lipoprotein subclasses: methodologic approaches and clinical relevance. Curr Opin Lipidol. 1994 Dec;5(6):395–403. doi: 10.1097/00041433-199412000-00002. [DOI] [PubMed] [Google Scholar]
- Austin M. A., Jarvik G. P., Hokanson J. E., Edwards K. Complex segregation analysis of LDL peak particle diameter. Genet Epidemiol. 1993;10(6):599–604. doi: 10.1002/gepi.1370100645. [DOI] [PubMed] [Google Scholar]
- Austin M. A., King M. C., Vranizan K. M., Newman B., Krauss R. M. Inheritance of low-density lipoprotein subclass patterns: results of complex segregation analysis. Am J Hum Genet. 1988 Dec;43(6):838–846. [PMC free article] [PubMed] [Google Scholar]
- Austin M. A., Mykkänen L., Kuusisto J., Edwards K. L., Nelson C., Haffner S. M., Pyörälä K., Laakso M. Prospective study of small LDLs as a risk factor for non-insulin dependent diabetes mellitus in elderly men and women. Circulation. 1995 Oct 1;92(7):1770–1778. doi: 10.1161/01.cir.92.7.1770. [DOI] [PubMed] [Google Scholar]
- Austin M. A., Newman B., Selby J. V., Edwards K., Mayer E. J., Krauss R. M. Genetics of LDL subclass phenotypes in women twins. Concordance, heritability, and commingling analysis. Arterioscler Thromb. 1993 May;13(5):687–695. doi: 10.1161/01.atv.13.5.687. [DOI] [PubMed] [Google Scholar]
- Austin M. A., Talmud P. J., Luong L. A., Haddad L., Day I. N., Newman B., Edwards K. L., Krauss R. M., Humphries S. E. Candidate-gene studies of the atherogenic lipoprotein phenotype: a sib-pair linkage analysis of DZ women twins. Am J Hum Genet. 1998 Feb;62(2):406–419. doi: 10.1086/301712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Babirak S. P., Iverius P. H., Fujimoto W. Y., Brunzell J. D. Detection and characterization of the heterozygote state for lipoprotein lipase deficiency. Arteriosclerosis. 1989 May-Jun;9(3):326–334. doi: 10.1161/01.atv.9.3.326. [DOI] [PubMed] [Google Scholar]
- Bredie S. J., Kiemeney L. A., de Haan A. F., Demacker P. N., Stalenhoef A. F. Inherited susceptibility determines the distribution of dense low-density lipoprotein subfraction profiles in familial combined hyperlipidemia. Am J Hum Genet. 1996 Apr;58(4):812–822. [PMC free article] [PubMed] [Google Scholar]
- Brunzell J. D., Hazzard W. R., Porte D., Jr, Bierman E. L. Evidence for a common, saturable, triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man. J Clin Invest. 1973 Jul;52(7):1578–1585. doi: 10.1172/JCI107334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Campos H., Genest J. J., Jr, Blijlevens E., McNamara J. R., Jenner J. L., Ordovas J. M., Wilson P. W., Schaefer E. J. Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb. 1992 Feb;12(2):187–195. doi: 10.1161/01.atv.12.2.187. [DOI] [PubMed] [Google Scholar]
- Cannings C., Thompson E. A. Ascertainment in the sequential sampling of pedigrees. Clin Genet. 1977 Oct;12(4):208–212. doi: 10.1111/j.1399-0004.1977.tb00928.x. [DOI] [PubMed] [Google Scholar]
- Capell W. H., Zambon A., Austin M. A., Brunzell J. D., Hokanson J. E. Compositional differences of LDL particles in normal subjects with LDL subclass phenotype A and LDL subclass phenotype B. Arterioscler Thromb Vasc Biol. 1996 Aug;16(8):1040–1046. doi: 10.1161/01.atv.16.8.1040. [DOI] [PubMed] [Google Scholar]
- Clerget-Darpoux F., Bonaïti-Pellié C., Hochez J. Effects of misspecifying genetic parameters in lod score analysis. Biometrics. 1986 Jun;42(2):393–399. [PubMed] [Google Scholar]
- Coresh J., Kwiterovich P. O., Jr, Smith H. H., Bachorik P. S. Association of plasma triglyceride concentration and LDL particle diameter, density, and chemical composition with premature coronary artery disease in men and women. J Lipid Res. 1993 Oct;34(10):1687–1697. [PubMed] [Google Scholar]
- Crouse J. R., Parks J. S., Schey H. M., Kahl F. R. Studies of low density lipoprotein molecular weight in human beings with coronary artery disease. J Lipid Res. 1985 May;26(5):566–574. [PubMed] [Google Scholar]
- Demenais F. M., Amos C. I. Power of the sib-pair and lod-score methods for linkage analysis of quantitative traits. Prog Clin Biol Res. 1989;329:201–206. [PubMed] [Google Scholar]
- Emi M., Wilson D. E., Iverius P. H., Wu L., Hata A., Hegele R., Williams R. R., Lalouel J. M. Missense mutation (Gly----Glu188) of human lipoprotein lipase imparting functional deficiency. J Biol Chem. 1990 Apr 5;265(10):5910–5916. [PubMed] [Google Scholar]
- Fisher W. R. Heterogeneity of plasma low density lipoproteins manifestations of the physiologic phenomenon in man. Metabolism. 1983 Mar;32(3):283–291. doi: 10.1016/0026-0495(83)90194-4. [DOI] [PubMed] [Google Scholar]
- Gardner C. D., Fortmann S. P., Krauss R. M. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA. 1996 Sep 18;276(11):875–881. [PubMed] [Google Scholar]
- Goddard K. A., Jarvik G. P., Graham J., McNeney B., Hsu L., Siegmund K., Grosser S., Olson J., Wijsman E. M. Analysis of quantitative risk factors for a common oligogenic disease. Genet Epidemiol. 1995;12(6):759–764. doi: 10.1002/gepi.1370120638. [DOI] [PubMed] [Google Scholar]
- Graham J., Chapman N. H., Goddard K. A., Goode E. L., Wijsman E. M., Jarvik G. P. Segregation and linkage analysis of a quantitative versus a qualitative trait in large pedigrees. Genet Epidemiol. 1997;14(6):999–1004. doi: 10.1002/(SICI)1098-2272(1997)14:6<999::AID-GEPI73>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
- Griffin B. A., Caslake M. J., Yip B., Tait G. W., Packard C. J., Shepherd J. Rapid isolation of low density lipoprotein (LDL) subfractions from plasma by density gradient ultracentrifugation. Atherosclerosis. 1990 Jul;83(1):59–67. doi: 10.1016/0021-9150(90)90131-2. [DOI] [PubMed] [Google Scholar]
- Griffin B. A., Freeman D. J., Tait G. W., Thomson J., Caslake M. J., Packard C. J., Shepherd J. Role of plasma triglyceride in the regulation of plasma low density lipoprotein (LDL) subfractions: relative contribution of small, dense LDL to coronary heart disease risk. Atherosclerosis. 1994 Apr;106(2):241–253. doi: 10.1016/0021-9150(94)90129-5. [DOI] [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hokanson J. E. Lipoprotein lipase gene variants and risk of coronary disease: a quantitative analysis of population-based studies. Int J Clin Lab Res. 1997;27(1):24–34. doi: 10.1007/BF02827239. [DOI] [PubMed] [Google Scholar]
- Jaakkola O., Solakivi T., Tertov V. V., Orekhov A. N., Miettinen T. A., Nikkari T. Characteristics of low-density lipoprotein subfractions from patients with coronary artery disease. Coron Artery Dis. 1993 Apr;4(4):379–385. doi: 10.1097/00019501-199304000-00010. [DOI] [PubMed] [Google Scholar]
- Krauss R. M., Burke D. J. Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res. 1982 Jan;23(1):97–104. [PubMed] [Google Scholar]
- Lamarche B., Tchernof A., Moorjani S., Cantin B., Dagenais G. R., Lupien P. J., Després J. P. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men. Prospective results from the Québec Cardiovascular Study. Circulation. 1997 Jan 7;95(1):69–75. doi: 10.1161/01.cir.95.1.69. [DOI] [PubMed] [Google Scholar]
- Lamon-Fava S., Jimenez D., Christian J. C., Fabsitz R. R., Reed T., Carmelli D., Castelli W. P., Ordovas J. M., Wilson P. W., Schaefer E. J. The NHLBI Twin Study: heritability of apolipoprotein A-I, B, and low density lipoprotein subclasses and concordance for lipoprotein(a). Atherosclerosis. 1991 Nov;91(1-2):97–106. doi: 10.1016/0021-9150(91)90191-5. [DOI] [PubMed] [Google Scholar]
- Lathrop G. M., Lalouel J. M., Julier C., Ott J. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3443–3446. doi: 10.1073/pnas.81.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leitersdorf E., Tobin E. J., Davignon J., Hobbs H. H. Common low-density lipoprotein receptor mutations in the French Canadian population. J Clin Invest. 1990 Apr;85(4):1014–1023. doi: 10.1172/JCI114531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MORTON N. E. Sequential tests for the detection of linkage. Am J Hum Genet. 1955 Sep;7(3):277–318. [PMC free article] [PubMed] [Google Scholar]
- Magill P., Rao S. N., Miller N. E., Nicoll A., Brunzell J., St Hilaire J., Lewis B. Relationships between the metabolism of high-density and very-low-density lipoproteins in man: studies of apolipoprotein kinetics and adipose tissue lipoprotein lipase activity. Eur J Clin Invest. 1982 Apr;12(2):113–120. doi: 10.1111/j.1365-2362.1982.tb00947.x. [DOI] [PubMed] [Google Scholar]
- Mailly F., Fisher R. M., Nicaud V., Luong L. A., Evans A. E., Marques-Vidal P., Luc G., Arveiler D., Bard J. M., Poirier O. Association between the LPL-D9N mutation in the lipoprotein lipase gene and plasma lipid traits in myocardial infarction survivors from the ECTIM Study. Atherosclerosis. 1996 Apr 26;122(1):21–28. doi: 10.1016/0021-9150(95)05736-6. [DOI] [PubMed] [Google Scholar]
- Mailly F., Tugrul Y., Reymer P. W., Bruin T., Seed M., Groenemeyer B. F., Asplund-Carlson A., Vallance D., Winder A. F., Miller G. J. A common variant in the gene for lipoprotein lipase (Asp9-->Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Arterioscler Thromb Vasc Biol. 1995 Apr;15(4):468–478. doi: 10.1161/01.atv.15.4.468. [DOI] [PubMed] [Google Scholar]
- Marcovina S. M., Albers J. J., Dati F., Ledue T. B., Ritchie R. F. International Federation of Clinical Chemistry standardization project for measurements of apolipoproteins A-I and B. Clin Chem. 1991 Oct;37(10 Pt 1):1676–1682. [PubMed] [Google Scholar]
- Miesenböck G., Hölzl B., Föger B., Brandstätter E., Paulweber B., Sandhofer F., Patsch J. R. Heterozygous lipoprotein lipase deficiency due to a missense mutation as the cause of impaired triglyceride tolerance with multiple lipoprotein abnormalities. J Clin Invest. 1993 Feb;91(2):448–455. doi: 10.1172/JCI116222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naggert J. K., Recinos A., 3rd, Lamerdin J. E., Krauss R. M., Nishina P. M. The atherogenic lipoprotein phenotype is not caused by a mutation in the coding region of the low density lipoprotein receptor gene. Clin Genet. 1997 Apr;51(4):236–240. doi: 10.1111/j.1399-0004.1997.tb02461.x. [DOI] [PubMed] [Google Scholar]
- Nikkilä E. A., Taskinen M. R., Kekki M. Relation of plasma high-density lipoprotein cholesterol to lipoprotein-lipase activity in adipose tissue and skeletal muscle of man. Atherosclerosis. 1978 Apr;29(4):497–501. doi: 10.1016/0021-9150(78)90178-8. [DOI] [PubMed] [Google Scholar]
- Nishina P. M., Johnson J. P., Naggert J. K., Krauss R. M. Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):708–712. doi: 10.1073/pnas.89.2.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nordestgaard B. G., Abildgaard S., Wittrup H. H., Steffensen R., Jensen G., Tybjaerg-Hansen A. Heterozygous lipoprotein lipase deficiency: frequency in the general population, effect on plasma lipid levels, and risk of ischemic heart disease. Circulation. 1997 Sep 16;96(6):1737–1744. doi: 10.1161/01.cir.96.6.1737. [DOI] [PubMed] [Google Scholar]
- Ott J. Linkage probability and its approximate confidence interval under possible heterogeneity. Genet Epidemiol Suppl. 1986;1:251–257. doi: 10.1002/gepi.1370030739. [DOI] [PubMed] [Google Scholar]
- Poncz M., Solowiejczyk D., Harpel B., Mory Y., Schwartz E., Surrey S. Construction of human gene libraries from small amounts of peripheral blood: analysis of beta-like globin genes. Hemoglobin. 1982;6(1):27–36. doi: 10.3109/03630268208996930. [DOI] [PubMed] [Google Scholar]
- Rotter J. I., Bu X., Cantor R. M., Warden C. H., Brown J., Gray R. J., Blanche P. J., Krauss R. M., Lusis A. J. Multilocus genetic determinants of LDL particle size in coronary artery disease families. Am J Hum Genet. 1996 Mar;58(3):585–594. [PMC free article] [PubMed] [Google Scholar]
- SMITH C. A. TESTING FOR HETEROGENEITY OF RECOMBINATION FRACTION VALUES IN HUMAN GENETICS. Ann Hum Genet. 1963 Nov;27:175–182. doi: 10.1111/j.1469-1809.1963.tb00210.x. [DOI] [PubMed] [Google Scholar]
- Stampfer M. J., Krauss R. M., Ma J., Blanche P. J., Holl L. G., Sacks F. M., Hennekens C. H. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA. 1996 Sep 18;276(11):882–888. [PubMed] [Google Scholar]
- Taylor K. G., Holdsworth G., Galton D. J. Lipoprotein lipase and adipose tissue and plasma triglyceride clearance in patients with primary hypertriglyceridaemia. Eur J Clin Invest. 1980 Apr;10(2 Pt 1):133–138. doi: 10.1111/j.1365-2362.1980.tb02072.x. [DOI] [PubMed] [Google Scholar]
- Tornvall P., Karpe F., Carlson L. A., Hamsten A. Relationships of low density lipoprotein subfractions to angiographically defined coronary artery disease in young survivors of myocardial infarction. Atherosclerosis. 1991 Sep;90(1):67–80. doi: 10.1016/0021-9150(91)90245-x. [DOI] [PubMed] [Google Scholar]
- Wijsman E. M., Amos C. I. Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol. 1997;14(6):719–735. doi: 10.1002/(SICI)1098-2272(1997)14:6<719::AID-GEPI28>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Wilson D. E., Emi M., Iverius P. H., Hata A., Wu L. L., Hillas E., Williams R. R., Lalouel J. M. Phenotypic expression of heterozygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation. J Clin Invest. 1990 Sep;86(3):735–750. doi: 10.1172/JCI114770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zambon A., Torres A., Bijvoet S., Gagne C., Moorjani S., Lupien P. J., Hayden M. R., Brunzell J. D. Prevention of raised low-density lipoprotein cholesterol in a patient with familial hypercholesterolaemia and lipoprotein lipase deficiency. Lancet. 1993 May 1;341(8853):1119–1121. doi: 10.1016/0140-6736(93)93129-o. [DOI] [PubMed] [Google Scholar]
- Zhang H., Henderson H., Gagne S. E., Clee S. M., Miao L., Liu G., Hayden M. R. Common sequence variants of lipoprotein lipase: standardized studies of in vitro expression and catalytic function. Biochim Biophys Acta. 1996 Jul 26;1302(2):159–166. doi: 10.1016/0005-2760(96)00059-8. [DOI] [PubMed] [Google Scholar]
- de Graaf J., Swinkels D. W., de Haan A. F., Demacker P. N., Stalenhoef A. F. Both inherited susceptibility and environmental exposure determine the low-density lipoprotein-subfraction pattern distribution in healthy Dutch families. Am J Hum Genet. 1992 Dec;51(6):1295–1310. [PMC free article] [PubMed] [Google Scholar]