Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Mar;64(3):691–697. doi: 10.1086/302302

Specificity in transforming growth factor-beta signaling pathways.

C J Ring 1, K W Cho 1
PMCID: PMC1377785  PMID: 10053002

Full Text

The Full Text of this article is available as a PDF (203.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armes N. A., Smith J. C. The ALK-2 and ALK-4 activin receptors transduce distinct mesoderm-inducing signals during early Xenopus development but do not co-operate to establish thresholds. Development. 1997 Oct;124(19):3797–3804. doi: 10.1242/dev.124.19.3797. [DOI] [PubMed] [Google Scholar]
  2. Artinger M., Blitz I., Inoue K., Tran U., Cho K. W. Interaction of goosecoid and brachyury in Xenopus mesoderm patterning. Mech Dev. 1997 Jul;65(1-2):187–196. doi: 10.1016/s0925-4773(97)00073-7. [DOI] [PubMed] [Google Scholar]
  3. Baker J. C., Harland R. M. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev. 1996 Aug 1;10(15):1880–1889. doi: 10.1101/gad.10.15.1880. [DOI] [PubMed] [Google Scholar]
  4. Candia A. F., Watabe T., Hawley S. H., Onichtchouk D., Zhang Y., Derynck R., Niehrs C., Cho K. W. Cellular interpretation of multiple TGF-beta signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development. 1997 Nov;124(22):4467–4480. doi: 10.1242/dev.124.22.4467. [DOI] [PubMed] [Google Scholar]
  5. Chen X., Rubock M. J., Whitman M. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature. 1996 Oct 24;383(6602):691–696. doi: 10.1038/383691a0. [DOI] [PubMed] [Google Scholar]
  6. Cárcamo J., Weis F. M., Ventura F., Wieser R., Wrana J. L., Attisano L., Massagué J. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol Cell Biol. 1994 Jun;14(6):3810–3821. doi: 10.1128/mcb.14.6.3810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Robertis E. M., Sasai Y. A common plan for dorsoventral patterning in Bilateria. Nature. 1996 Mar 7;380(6569):37–40. doi: 10.1038/380037a0. [DOI] [PubMed] [Google Scholar]
  8. Dosch R., Gawantka V., Delius H., Blumenstock C., Niehrs C. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development. 1997 Jun;124(12):2325–2334. doi: 10.1242/dev.124.12.2325. [DOI] [PubMed] [Google Scholar]
  9. Dyson S., Gurdon J. B. The interpretation of position in a morphogen gradient as revealed by occupancy of activin receptors. Cell. 1998 May 15;93(4):557–568. doi: 10.1016/s0092-8674(00)81185-x. [DOI] [PubMed] [Google Scholar]
  10. Graff J. M., Bansal A., Melton D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGF beta superfamily. Cell. 1996 May 17;85(4):479–487. doi: 10.1016/s0092-8674(00)81249-0. [DOI] [PubMed] [Google Scholar]
  11. Gurdon J. B., Harger P., Mitchell A., Lemaire P. Activin signalling and response to a morphogen gradient. Nature. 1994 Oct 6;371(6497):487–492. doi: 10.1038/371487a0. [DOI] [PubMed] [Google Scholar]
  12. Harland R., Gerhart J. Formation and function of Spemann's organizer. Annu Rev Cell Dev Biol. 1997;13:611–667. doi: 10.1146/annurev.cellbio.13.1.611. [DOI] [PubMed] [Google Scholar]
  13. Hata A., Lagna G., Massagué J., Hemmati-Brivanlou A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 1998 Jan 15;12(2):186–197. doi: 10.1101/gad.12.2.186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hogan B. L. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 1996 Jul 1;10(13):1580–1594. doi: 10.1101/gad.10.13.1580. [DOI] [PubMed] [Google Scholar]
  15. Imamura T., Takase M., Nishihara A., Oeda E., Hanai J., Kawabata M., Miyazono K. Smad6 inhibits signalling by the TGF-beta superfamily. Nature. 1997 Oct 9;389(6651):622–626. doi: 10.1038/39355. [DOI] [PubMed] [Google Scholar]
  16. Johnson D. W., Berg J. N., Baldwin M. A., Gallione C. J., Marondel I., Yoon S. J., Stenzel T. T., Speer M., Pericak-Vance M. A., Diamond A. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996 Jun;13(2):189–195. doi: 10.1038/ng0696-189. [DOI] [PubMed] [Google Scholar]
  17. Kretzschmar M., Doody J., Massagué J. Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature. 1997 Oct 9;389(6651):618–622. doi: 10.1038/39348. [DOI] [PubMed] [Google Scholar]
  18. Labbé E., Silvestri C., Hoodless P. A., Wrana J. L., Attisano L. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol Cell. 1998 Jul;2(1):109–120. doi: 10.1016/s1097-2765(00)80119-7. [DOI] [PubMed] [Google Scholar]
  19. Lawrence P. A., Struhl G. Morphogens, compartments, and pattern: lessons from drosophila? Cell. 1996 Jun 28;85(7):951–961. doi: 10.1016/s0092-8674(00)81297-0. [DOI] [PubMed] [Google Scholar]
  20. Lecuit T., Cohen S. M. Dpp receptor levels contribute to shaping the Dpp morphogen gradient in the Drosophila wing imaginal disc. Development. 1998 Dec;125(24):4901–4907. doi: 10.1242/dev.125.24.4901. [DOI] [PubMed] [Google Scholar]
  21. Marqués G., Musacchio M., Shimell M. J., Wünnenberg-Stapleton K., Cho K. W., O'Connor M. B. Production of a DPP activity gradient in the early Drosophila embryo through the opposing actions of the SOG and TLD proteins. Cell. 1997 Oct 31;91(3):417–426. doi: 10.1016/s0092-8674(00)80425-0. [DOI] [PubMed] [Google Scholar]
  22. Massagué J. TGF-beta signal transduction. Annu Rev Biochem. 1998;67:753–791. doi: 10.1146/annurev.biochem.67.1.753. [DOI] [PubMed] [Google Scholar]
  23. McAllister K. A., Grogg K. M., Johnson D. W., Gallione C. J., Baldwin M. A., Jackson C. E., Helmbold E. A., Markel D. S., McKinnon W. C., Murrell J. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994 Dec;8(4):345–351. doi: 10.1038/ng1294-345. [DOI] [PubMed] [Google Scholar]
  24. Nakao A., Afrakhte M., Morén A., Nakayama T., Christian J. L., Heuchel R., Itoh S., Kawabata M., Heldin N. E., Heldin C. H. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997 Oct 9;389(6651):631–635. doi: 10.1038/39369. [DOI] [PubMed] [Google Scholar]
  25. Nguyen M., Park S., Marqués G., Arora K. Interpretation of a BMP activity gradient in Drosophila embryos depends on synergistic signaling by two type I receptors, SAX and TKV. Cell. 1998 Nov 13;95(4):495–506. doi: 10.1016/s0092-8674(00)81617-7. [DOI] [PubMed] [Google Scholar]
  26. Piccolo S., Agius E., Lu B., Goodman S., Dale L., De Robertis E. M. Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity. Cell. 1997 Oct 31;91(3):407–416. doi: 10.1016/s0092-8674(00)80424-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Piccolo S., Sasai Y., Lu B., De Robertis E. M. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell. 1996 Aug 23;86(4):589–598. doi: 10.1016/s0092-8674(00)80132-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Selleck S. B. Overgrowth syndromes and the regulation of signaling complexes by proteoglycans. Am J Hum Genet. 1999 Feb;64(2):372–377. doi: 10.1086/302266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Suzuki A., Chang C., Yingling J. M., Wang X. F., Hemmati-Brivanlou A. Smad5 induces ventral fates in Xenopus embryo. Dev Biol. 1997 Apr 15;184(2):402–405. doi: 10.1006/dbio.1997.8548. [DOI] [PubMed] [Google Scholar]
  30. Thomsen G. H. Xenopus mothers against decapentaplegic is an embryonic ventralizing agent that acts downstream of the BMP-2/4 receptor. Development. 1996 Aug;122(8):2359–2366. doi: 10.1242/dev.122.8.2359. [DOI] [PubMed] [Google Scholar]
  31. Tsukazaki T., Chiang T. A., Davison A. F., Attisano L., Wrana J. L. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell. 1998 Dec 11;95(6):779–791. doi: 10.1016/s0092-8674(00)81701-8. [DOI] [PubMed] [Google Scholar]
  32. Tsuneizumi K., Nakayama T., Kamoshida Y., Kornberg T. B., Christian J. L., Tabata T. Daughters against dpp modulates dpp organizing activity in Drosophila wing development. Nature. 1997 Oct 9;389(6651):627–631. doi: 10.1038/39362. [DOI] [PubMed] [Google Scholar]
  33. Watabe T., Kim S., Candia A., Rothbächer U., Hashimoto C., Inoue K., Cho K. W. Molecular mechanisms of Spemann's organizer formation: conserved growth factor synergy between Xenopus and mouse. Genes Dev. 1995 Dec 15;9(24):3038–3050. doi: 10.1101/gad.9.24.3038. [DOI] [PubMed] [Google Scholar]
  34. Whitman M. Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev. 1998 Aug 15;12(16):2445–2462. doi: 10.1101/gad.12.16.2445. [DOI] [PubMed] [Google Scholar]
  35. Wilson P. A., Hemmati-Brivanlou A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature. 1995 Jul 27;376(6538):331–333. doi: 10.1038/376331a0. [DOI] [PubMed] [Google Scholar]
  36. Zimmerman L. B., De Jesús-Escobar J. M., Harland R. M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell. 1996 Aug 23;86(4):599–606. doi: 10.1016/s0092-8674(00)80133-6. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES