Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Apr;64(4):1015–1023. doi: 10.1086/302346

Mutations in a dominant-negative isoform correlate with phenotype in inherited cardiac arrhythmias.

R Mohammad-Panah 1, S Demolombe 1, N Neyroud 1, P Guicheney 1, F Kyndt 1, M van den Hoff 1, I Baró 1, D Escande 1
PMCID: PMC1377825  PMID: 10090886

Abstract

The long QT syndrome is characterized by prolonged cardiac repolarization and a high risk of sudden death. Mutations in the KCNQ1 gene, which encodes the cardiac KvLQT1 potassium ion (K+) channel, cause both the autosomal dominant Romano-Ward (RW) syndrome and the recessive Jervell and Lange-Nielsen (JLN) syndrome. JLN presents with cardiac arrhythmias and congenital deafness, and heterozygous carriers of JLN mutations exhibit a very mild cardiac phenotype. Despite the phenotypic differences between heterozygotes with RW and those with JLN mutations, both classes of variant protein fail to produce K+ currents in cultured cells. We have shown that an N-terminus-truncated KvLQT1 isoform endogenously expressed in the human heart exerts strong dominant-negative effects on the full-length KvLQT1 protein. Because RW and JLN mutations concern both truncated and full-length KvLQT1 isoforms, we investigated whether RW or JLN mutations would have different impacts on the dominant-negative properties of the truncated KvLQT1 splice variant. In a mammalian expression system, we found that JLN, but not RW, mutations suppress the dominant-negative effects of the truncated KvLQT1. Thus, in JLN heterozygous carriers, the full-length KvLQT1 protein encoded by the unaffected allele should not be subject to the negative influence of the mutated truncated isoform, leaving some cardiac K+ current available for repolarization. This is the first report of a genetic disease in which the impact of a mutation on a dominant-negative isoform correlates with the phenotype.

Full Text

The Full Text of this article is available as a PDF (713.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barhanin J., Lesage F., Guillemare E., Fink M., Lazdunski M., Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996 Nov 7;384(6604):78–80. doi: 10.1038/384078a0. [DOI] [PubMed] [Google Scholar]
  2. Chouabe C., Neyroud N., Guicheney P., Lazdunski M., Romey G., Barhanin J. Properties of KvLQT1 K+ channel mutations in Romano-Ward and Jervell and Lange-Nielsen inherited cardiac arrhythmias. EMBO J. 1997 Sep 1;16(17):5472–5479. doi: 10.1093/emboj/16.17.5472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Demolombe S., Baró I., Péréon Y., Bliek J., Mohammad-Panah R., Pollard H., Morid S., Mannens M., Wilde A., Barhanin J. A dominant negative isoform of the long QT syndrome 1 gene product. J Biol Chem. 1998 Mar 20;273(12):6837–6843. doi: 10.1074/jbc.273.12.6837. [DOI] [PubMed] [Google Scholar]
  4. Donger C., Denjoy I., Berthet M., Neyroud N., Cruaud C., Bennaceur M., Chivoret G., Schwartz K., Coumel P., Guicheney P. KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation. 1997 Nov 4;96(9):2778–2781. doi: 10.1161/01.cir.96.9.2778. [DOI] [PubMed] [Google Scholar]
  5. Duggal P., Vesely M. R., Wattanasirichaigoon D., Villafane J., Kaushik V., Beggs A. H. Mutation of the gene for IsK associated with both Jervell and Lange-Nielsen and Romano-Ward forms of Long-QT syndrome. Circulation. 1998 Jan 20;97(2):142–146. doi: 10.1161/01.cir.97.2.142. [DOI] [PubMed] [Google Scholar]
  6. Ebihara K., Masuhiro Y., Kitamoto T., Suzawa M., Uematsu Y., Yoshizawa T., Ono T., Harada H., Matsuda K., Hasegawa T. Intron retention generates a novel isoform of the murine vitamin D receptor that acts in a dominant negative way on the vitamin D signaling pathway. Mol Cell Biol. 1996 Jul;16(7):3393–3400. doi: 10.1128/mcb.16.7.3393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. FRASER G. R., FROGGATT P., MURPHY T. GENETICAL ASPECTS OF THE CARDIO-AUDITORY SYNDROME OF JERVELL AND LANGE-NIELSEN (CONGENITAL DEAFNESS AND ELECTROCARDIOGRAPHIC ABNORMALITIES). Ann Hum Genet. 1964 Nov;28:133–157. doi: 10.1111/j.1469-1809.1964.tb00469.x. [DOI] [PubMed] [Google Scholar]
  8. Jiang M., Tseng-Crank J., Tseng G. N. Suppression of slow delayed rectifier current by a truncated isoform of KvLQT1 cloned from normal human heart. J Biol Chem. 1997 Sep 26;272(39):24109–24112. doi: 10.1074/jbc.272.39.24109. [DOI] [PubMed] [Google Scholar]
  9. Li H., Chen Q., Moss A. J., Robinson J., Goytia V., Perry J. C., Vincent G. M., Priori S. G., Lehmann M. H., Denfield S. W. New mutations in the KVLQT1 potassium channel that cause long-QT syndrome. Circulation. 1998 Apr 7;97(13):1264–1269. doi: 10.1161/01.cir.97.13.1264. [DOI] [PubMed] [Google Scholar]
  10. Mohammad-Panah R., Demolombe S., Riochet D., Leblais V., Loussouarn G., Pollard H., Baró I., Escande D. Hyperexpression of recombinant CFTR in heterologous cells alters its physiological properties. Am J Physiol. 1998 Feb;274(2 Pt 1):C310–C318. doi: 10.1152/ajpcell.1998.274.2.C310. [DOI] [PubMed] [Google Scholar]
  11. Neyroud N., Denjoy I., Donger C., Gary F., Villain E., Leenhardt A., Benali K., Schwartz K., Coumel P., Guicheney P. Heterozygous mutation in the pore of potassium channel gene KvLQT1 causes an apparently normal phenotype in long QT syndrome. Eur J Hum Genet. 1998 Mar-Apr;6(2):129–133. doi: 10.1038/sj.ejhg.5200165. [DOI] [PubMed] [Google Scholar]
  12. Neyroud N., Tesson F., Denjoy I., Leibovici M., Donger C., Barhanin J., Fauré S., Gary F., Coumel P., Petit C. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet. 1997 Feb;15(2):186–189. doi: 10.1038/ng0297-186. [DOI] [PubMed] [Google Scholar]
  13. Oakley R. H., Webster J. C., Sar M., Parker C. R., Jr, Cidlowski J. A. Expression and subcellular distribution of the beta-isoform of the human glucocorticoid receptor. Endocrinology. 1997 Nov;138(11):5028–5038. doi: 10.1210/endo.138.11.5501. [DOI] [PubMed] [Google Scholar]
  14. Patel B. K., Pierce J. H., LaRochelle W. J. Regulation of interleukin 4-mediated signaling by naturally occurring dominant negative and attenuated forms of human Stat6. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):172–177. doi: 10.1073/pnas.95.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Roden D. M., Lazzara R., Rosen M., Schwartz P. J., Towbin J., Vincent G. M. Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. The SADS Foundation Task Force on LQTS. Circulation. 1996 Oct 15;94(8):1996–2012. doi: 10.1161/01.cir.94.8.1996. [DOI] [PubMed] [Google Scholar]
  16. Ross R. J., Esposito N., Shen X. Y., Von Laue S., Chew S. L., Dobson P. R., Postel-Vinay M. C., Finidori J. A short isoform of the human growth hormone receptor functions as a dominant negative inhibitor of the full-length receptor and generates large amounts of binding protein. Mol Endocrinol. 1997 Mar;11(3):265–273. doi: 10.1210/mend.11.3.9901. [DOI] [PubMed] [Google Scholar]
  17. Sanguinetti M. C., Curran M. E., Zou A., Shen J., Spector P. S., Atkinson D. L., Keating M. T. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 1996 Nov 7;384(6604):80–83. doi: 10.1038/384080a0. [DOI] [PubMed] [Google Scholar]
  18. Schulze-Bahr E., Haverkamp W., Wedekind H., Rubie C., Hördt M., Borggrefe M., Assmann G., Breithardt G., Funke H. Autosomal recessive long-QT syndrome (Jervell Lange-Nielsen syndrome) is genetically heterogeneous. Hum Genet. 1997 Oct;100(5-6):573–576. doi: 10.1007/s004390050554. [DOI] [PubMed] [Google Scholar]
  19. Shalaby F. Y., Levesque P. C., Yang W. P., Little W. A., Conder M. L., Jenkins-West T., Blanar M. A. Dominant-negative KvLQT1 mutations underlie the LQT1 form of long QT syndrome. Circulation. 1997 Sep 16;96(6):1733–1736. doi: 10.1161/01.cir.96.6.1733. [DOI] [PubMed] [Google Scholar]
  20. Tyson J., Tranebjaerg L., Bellman S., Wren C., Taylor J. F., Bathen J., Aslaksen B., Sørland S. J., Lund O., Malcolm S. IsK and KvLQT1: mutation in either of the two subunits of the slow component of the delayed rectifier potassium channel can cause Jervell and Lange-Nielsen syndrome. Hum Mol Genet. 1997 Nov;6(12):2179–2185. doi: 10.1093/hmg/6.12.2179. [DOI] [PubMed] [Google Scholar]
  21. Wang Q., Curran M. E., Splawski I., Burn T. C., Millholland J. M., VanRaay T. J., Shen J., Timothy K. W., Vincent G. M., de Jager T. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet. 1996 Jan;12(1):17–23. doi: 10.1038/ng0196-17. [DOI] [PubMed] [Google Scholar]
  22. Wang Y., Miksicek R. J. Identification of a dominant negative form of the human estrogen receptor. Mol Endocrinol. 1991 Nov;5(11):1707–1715. doi: 10.1210/mend-5-11-1707. [DOI] [PubMed] [Google Scholar]
  23. Wollnik B., Schroeder B. C., Kubisch C., Esperer H. D., Wieacker P., Jentsch T. J. Pathophysiological mechanisms of dominant and recessive KVLQT1 K+ channel mutations found in inherited cardiac arrhythmias. Hum Mol Genet. 1997 Oct;6(11):1943–1949. doi: 10.1093/hmg/6.11.1943. [DOI] [PubMed] [Google Scholar]
  24. Zhu X. G., McPhie P., Cheng S. Y. Differential sensitivity of thyroid hormone receptor isoform homodimers and mutant heterodimers to hormone-induced dissociation from deoxyribonucleic acid: its role in dominant negative action. Endocrinology. 1997 Apr;138(4):1456–1463. doi: 10.1210/endo.138.4.5067. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES