Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 May;64(5):1264–1269. doi: 10.1086/302391

The mammalian Mre11-Rad50-nbs1 protein complex: integration of functions in the cellular DNA-damage response.

J H Petrini 1
PMCID: PMC1377860  PMID: 10205255

Full Text

The Full Text of this article is available as a PDF (309.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajimura M., Leem S. H., Ogawa H. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics. 1993 Jan;133(1):51–66. doi: 10.1093/genetics/133.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bai Y., Symington L. S. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 1996 Aug 15;10(16):2025–2037. doi: 10.1101/gad.10.16.2025. [DOI] [PubMed] [Google Scholar]
  3. Carney J. P., Maser R. S., Olivares H., Davis E. M., Le Beau M., Yates J. R., 3rd, Hays L., Morgan W. F., Petrini J. H. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell. 1998 May 1;93(3):477–486. doi: 10.1016/s0092-8674(00)81175-7. [DOI] [PubMed] [Google Scholar]
  4. Cleaver J. E. DNA repair in man. Birth Defects Orig Artic Ser. 1989;25(2):61–82. [PubMed] [Google Scholar]
  5. Dolganov G. M., Maser R. S., Novikov A., Tosto L., Chong S., Bressan D. A., Petrini J. H. Human Rad50 is physically associated with human Mre11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol Cell Biol. 1996 Sep;16(9):4832–4841. doi: 10.1128/mcb.16.9.4832. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fabre F., Boulet A., Roman H. Gene conversion at different points in the mitotic cycle of Saccharomyces cerevisiae. Mol Gen Genet. 1984;195(1-2):139–143. doi: 10.1007/BF00332736. [DOI] [PubMed] [Google Scholar]
  7. Game J. C. DNA double-strand breaks and the RAD50-RAD57 genes in Saccharomyces. Semin Cancer Biol. 1993 Apr;4(2):73–83. [PubMed] [Google Scholar]
  8. Haaf T., Golub E. I., Reddy G., Radding C. M., Ward D. C. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):2298–2302. doi: 10.1073/pnas.92.6.2298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haber J. E. Exploring the pathways of homologous recombination. Curr Opin Cell Biol. 1992 Jun;4(3):401–412. doi: 10.1016/0955-0674(92)90005-w. [DOI] [PubMed] [Google Scholar]
  10. Ivanov E. L., Korolev V. G., Fabre F. XRS2, a DNA repair gene of Saccharomyces cerevisiae, is needed for meiotic recombination. Genetics. 1992 Nov;132(3):651–664. doi: 10.1093/genetics/132.3.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jackson S. P. Cancer predisposition. Ataxia-telangiectasia at the crossroads. Curr Biol. 1995 Nov 1;5(11):1210–1212. doi: 10.1016/s0960-9822(95)00238-7. [DOI] [PubMed] [Google Scholar]
  12. Jongmans W., Vuillaume M., Chrzanowska K., Smeets D., Sperling K., Hall J. Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation. Mol Cell Biol. 1997 Sep;17(9):5016–5022. doi: 10.1128/mcb.17.9.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kadyk L. C., Hartwell L. H. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics. 1992 Oct;132(2):387–402. doi: 10.1093/genetics/132.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kolodner R. D. Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem Sci. 1995 Oct;20(10):397–401. doi: 10.1016/s0968-0004(00)89087-8. [DOI] [PubMed] [Google Scholar]
  15. Maizels N. Immunoglobulin class switch recombination: will genetics provide new clues to mechanism? Am J Hum Genet. 1999 May;64(5):1270–1275. doi: 10.1086/302393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maser R. S., Monsen K. J., Nelms B. E., Petrini J. H. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol. 1997 Oct;17(10):6087–6096. doi: 10.1128/mcb.17.10.6087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moore J. K., Haber J. E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol Cell Biol. 1996 May;16(5):2164–2173. doi: 10.1128/mcb.16.5.2164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nelms B. E., Maser R. S., MacKay J. F., Lagally M. G., Petrini J. H. In situ visualization of DNA double-strand break repair in human fibroblasts. Science. 1998 Apr 24;280(5363):590–592. doi: 10.1126/science.280.5363.590. [DOI] [PubMed] [Google Scholar]
  19. Nove J., Little J. B., Mayer P. J., Troilo P., Nichols W. W. Hypersensitivity of cells from a new chromosomal-breakage syndrome to DNA-damaging agents. Mutat Res. 1986 Dec;163(3):255–262. doi: 10.1016/0027-5107(86)90023-0. [DOI] [PubMed] [Google Scholar]
  20. Petrini J. H., Bressan D. A., Yao M. S. The RAD52 epistasis group in mammalian double strand break repair. Semin Immunol. 1997 Jun;9(3):181–188. doi: 10.1006/smim.1997.0067. [DOI] [PubMed] [Google Scholar]
  21. Schiestl R. H., Zhu J., Petes T. D. Effect of mutations in genes affecting homologous recombination on restriction enzyme-mediated and illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol. 1994 Jul;14(7):4493–4500. doi: 10.1128/mcb.14.7.4493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shiloh Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet. 1997;31:635–662. doi: 10.1146/annurev.genet.31.1.635. [DOI] [PubMed] [Google Scholar]
  23. Stumm M., Sperling K., Wegner R. D. Noncomplementation of radiation-induced chromosome aberrations in ataxia-telangiectasia/ataxia-telangiectasia-variant heterodikaryons. Am J Hum Genet. 1997 May;60(5):1246–1251. [PMC free article] [PubMed] [Google Scholar]
  24. Szostak J. W., Orr-Weaver T. L., Rothstein R. J., Stahl F. W. The double-strand-break repair model for recombination. Cell. 1983 May;33(1):25–35. doi: 10.1016/0092-8674(83)90331-8. [DOI] [PubMed] [Google Scholar]
  25. Timme T. L., Moses R. E. Diseases with DNA damage-processing defects. Am J Med Sci. 1988 Jan;295(1):40–48. doi: 10.1097/00000441-198801000-00009. [DOI] [PubMed] [Google Scholar]
  26. Tsukamoto Y., Kato J., Ikeda H. Effects of mutations of RAD50, RAD51, RAD52, and related genes on illegitimate recombination in Saccharomyces cerevisiae. Genetics. 1996 Feb;142(2):383–391. doi: 10.1093/genetics/142.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Varon R., Vissinga C., Platzer M., Cerosaletti K. M., Chrzanowska K. H., Saar K., Beckmann G., Seemanová E., Cooper P. R., Nowak N. J. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Cell. 1998 May 1;93(3):467–476. doi: 10.1016/s0092-8674(00)81174-5. [DOI] [PubMed] [Google Scholar]
  28. Xiao Y., Weaver D. T. Conditional gene targeted deletion by Cre recombinase demonstrates the requirement for the double-strand break repair Mre11 protein in murine embryonic stem cells. Nucleic Acids Res. 1997 Aug 1;25(15):2985–2991. doi: 10.1093/nar/25.15.2985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yamazaki V., Wegner R. D., Kirchgessner C. U. Characterization of cell cycle checkpoint responses after ionizing radiation in Nijmegen breakage syndrome cells. Cancer Res. 1998 Jun 1;58(11):2316–2322. [PubMed] [Google Scholar]
  30. van der Burgt I., Chrzanowska K. H., Smeets D., Weemaes C. Nijmegen breakage syndrome. J Med Genet. 1996 Feb;33(2):153–156. doi: 10.1136/jmg.33.2.153. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES