Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 May;64(5):1316–1322. doi: 10.1086/302376

Analysis of alkaptonuria (AKU) mutations and polymorphisms reveals that the CCC sequence motif is a mutational hot spot in the homogentisate 1,2 dioxygenase gene (HGO).

D Beltrán-Valero de Bernabé 1, F J Jimenez 1, R Aquaron 1, S Rodríguez de Córdoba 1
PMCID: PMC1377867  PMID: 10205262

Abstract

We recently showed that alkaptonuria (AKU) is caused by loss-of-function mutations in the homogentisate 1,2 dioxygenase gene (HGO). Herein we describe haplotype and mutational analyses of HGO in seven new AKU pedigrees. These analyses identified two novel single-nucleotide polymorphisms (INV4+31A-->G and INV11+18A-->G) and six novel AKU mutations (INV1-1G-->A, W60G, Y62C, A122D, P230T, and D291E), which further illustrates the remarkable allelic heterogeneity found in AKU. Reexamination of all 29 mutations and polymorphisms thus far described in HGO shows that these nucleotide changes are not randomly distributed; the CCC sequence motif and its inverted complement, GGG, are preferentially mutated. These analyses also demonstrated that the nucleotide substitutions in HGO do not involve CpG dinucleotides, which illustrates important differences between HGO and other genes for the occurrence of mutation at specific short-sequence motifs. Because the CCC sequence motifs comprise a significant proportion (34.5%) of all mutated bases that have been observed in HGO, we conclude that the CCC triplet is a mutational hot spot in HGO.

Full Text

The Full Text of this article is available as a PDF (238.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beltrán-Valero de Bernabé D., Granadino B., Chiarelli I., Porfirio B., Mayatepek E., Aquaron R., Moore M. M., Festen J. J., Sanmartí R., Peñalva M. A. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients. Am J Hum Genet. 1998 Apr;62(4):776–784. doi: 10.1086/301805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burns P. A., Gordon A. J., Kunsmann K., Glickman B. W. Influence of neighboring base sequence on the distribution and repair of N-ethyl-N-nitrosourea-induced lesions in Escherichia coli. Cancer Res. 1988 Aug 15;48(16):4455–4458. [PubMed] [Google Scholar]
  3. Cooper D. N., Krawczak M. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet. 1990 Jun;85(1):55–74. doi: 10.1007/BF00276326. [DOI] [PubMed] [Google Scholar]
  4. Fernández-Cañn J. M., Granadino B., Beltrán-Valero de Bernabé D., Renedo M., Fernández-Ruiz E., Peñalva M. A., Rodríguez de Córdoba S. The molecular basis of alkaptonuria. Nat Genet. 1996 Sep;14(1):19–24. doi: 10.1038/ng0996-19. [DOI] [PubMed] [Google Scholar]
  5. Gehrig A., Schmidt S. R., Müller C. R., Srsen S., Srsnova K., Kress W. Molecular defects in alkaptonuria. Cytogenet Cell Genet. 1997;76(1-2):14–16. doi: 10.1159/000134501. [DOI] [PubMed] [Google Scholar]
  6. Granadino B., Beltrán-Valero de Bernabé D., Fernández-Cañn J. M., Peñalva M. A., Rodríguez de Córdoba S. The human homogentisate 1,2-dioxygenase (HGO) gene. Genomics. 1997 Jul 15;43(2):115–122. doi: 10.1006/geno.1997.4805. [DOI] [PubMed] [Google Scholar]
  7. Green N. S., Lin M. M., Scharff M. D. Somatic hypermutation of antibody genes: a hot spot warms up. Bioessays. 1998 Mar;20(3):227–234. doi: 10.1002/(SICI)1521-1878(199803)20:3<227::AID-BIES6>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  8. Higashino K., Liu W., Ohkawa T., Yamamoto T., Fukui K., Ohno M., Imanishi H., Iwasaki A., Amuro Y., Hada T. A novel point mutation associated with alkaptonuria. Clin Genet. 1998 Mar;53(3):228–229. doi: 10.1111/j.1399-0004.1998.tb02684.x. [DOI] [PubMed] [Google Scholar]
  9. KNOX W. E., EDWARDS S. W. Homogentisate oxidase of liver. J Biol Chem. 1955 Oct;216(2):479–487. [PubMed] [Google Scholar]
  10. LA DU B. N., ZANNONI V. G., LASTER L., SEEGMILLER J. E. The nature of the defect in tyrosine metabolism in alcaptonuria. J Biol Chem. 1958 Jan;230(1):251–260. [PubMed] [Google Scholar]
  11. Reitsma P. H., Poort S. R., Bernardi F., Gandrille S., Long G. L., Sala N., Cooper D. N. Protein C deficiency: a database of mutations. For the Protein C & S Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 1993 Jan 11;69(1):77–84. [PubMed] [Google Scholar]
  12. Smith D. S., Creadon G., Jena P. K., Portanova J. P., Kotzin B. L., Wysocki L. J. Di- and trinucleotide target preferences of somatic mutagenesis in normal and autoreactive B cells. J Immunol. 1996 Apr 1;156(7):2642–2652. [PubMed] [Google Scholar]
  13. Youssoufian H., Kazazian H. H., Jr, Phillips D. G., Aronis S., Tsiftis G., Brown V. A., Antonarakis S. E. Recurrent mutations in haemophilia A give evidence for CpG mutation hotspots. 1986 Nov 27-Dec 3Nature. 324(6095):380–382. doi: 10.1038/324380a0. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES