Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 May;64(5):1340–1356. doi: 10.1086/302369

Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling.

B Wirth 1, M Herz 1, A Wetter 1, S Moskau 1, E Hahnen 1, S Rudnik-Schöneborn 1, T Wienker 1, K Zerres 1
PMCID: PMC1377870  PMID: 10205265

Abstract

Problems with diagnosis and genetic counseling occur for patients with autosomal recessive proximal spinal muscular atrophy (SMA) who do not show the most common mutation: homozygous absence of at least exon 7 of the telomeric survival motor neuron gene (SMN1). Here we present molecular genetic data for 42 independent nondeleted SMA patients. A nonradioactive quantitative PCR test showed one SMN1 copy in 19 patients (45%). By sequencing cloned reverse-transcription (RT) PCR products or genomic fragments of SMN1, we identified nine different mutations in 18 of the 19 patients, six described for the first time: three missense mutations (Y272C, T274I, S262I), three frameshift mutations in exons 2a, 2b, and 4 (124insT, 241-242ins4, 591delA), one nonsense mutation in exon 1 (Q15X), one Alu-mediated deletion from intron 4 to intron 6, and one donor splice site mutation in intron 7 (c.922+6T-->G). The most frequent mutation, Y272C, was found in 6 (33%) of 18 patients. Each intragenic mutation found in at least two patients occurred on the same haplotype background, indicating founder mutations. Genotype-phenotype correlation allowed inference of the effect of each mutation on the function of the SMN1 protein and the role of the SMN2 copy number in modulating the SMA phenotype. In 14 of 23 SMA patients with two SMN1 copies, at least one intact SMN1 copy was sequenced, which excludes a 5q-SMA and suggests the existence of further gene(s) responsible for approximately 4%-5% of phenotypes indistinguishable from SMA. We determined the validity of the test, and we discuss its practical implications and limitations.

Full Text

The Full Text of this article is available as a PDF (931.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brahe C., Clermont O., Zappata S., Tiziano F., Melki J., Neri G. Frameshift mutation in the survival motor neuron gene in a severe case of SMA type I. Hum Mol Genet. 1996 Dec;5(12):1971–1976. doi: 10.1093/hmg/5.12.1971. [DOI] [PubMed] [Google Scholar]
  2. Burghes A. H. When is a deletion not a deletion? When it is converted. Am J Hum Genet. 1997 Jul;61(1):9–15. doi: 10.1086/513913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bussaglia E., Clermont O., Tizzano E., Lefebvre S., Bürglen L., Cruaud C., Urtizberea J. A., Colomer J., Munnich A., Baiget M. A frame-shift deletion in the survival motor neuron gene in Spanish spinal muscular atrophy patients. Nat Genet. 1995 Nov;11(3):335–337. doi: 10.1038/ng1195-335. [DOI] [PubMed] [Google Scholar]
  4. Bürglen L., Lefebvre S., Clermont O., Burlet P., Viollet L., Cruaud C., Munnich A., Melki J. Structure and organization of the human survival motor neurone (SMN) gene. Genomics. 1996 Mar 15;32(3):479–482. doi: 10.1006/geno.1996.0147. [DOI] [PubMed] [Google Scholar]
  5. Bürglen L., Seroz T., Miniou P., Lefebvre S., Burlet P., Munnich A., Pequignot E. V., Egly J. M., Melki J. The gene encoding p44, a subunit of the transcription factor TFIIH, is involved in large-scale deletions associated with Werdnig-Hoffmann disease. Am J Hum Genet. 1997 Jan;60(1):72–79. [PMC free article] [PubMed] [Google Scholar]
  6. Campbell L., Daniels R. J., Dubowitz V., Davies K. E. Maternal mosaicism for a second mutational event in a type I spinal muscular atrophy family. Am J Hum Genet. 1998 Jul;63(1):37–44. doi: 10.1086/301918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell L., Potter A., Ignatius J., Dubowitz V., Davies K. Genomic variation and gene conversion in spinal muscular atrophy: implications for disease process and clinical phenotype. Am J Hum Genet. 1997 Jul;61(1):40–50. doi: 10.1086/513886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Carter T. A., Bönnemann C. G., Wang C. H., Obici S., Parano E., De Fatima Bonaldo M., Ross B. M., Penchaszadeh G. K., Mackenzie A., Soares M. B. A multicopy transcription-repair gene, BTF2p44, maps to the SMA region and demonstrates SMA associated deletions. Hum Mol Genet. 1997 Feb;6(2):229–236. doi: 10.1093/hmg/6.2.229. [DOI] [PubMed] [Google Scholar]
  9. Chang J. G., Jong Y. J., Huang J. M., Wang W. S., Yang T. Y., Chang C. P., Chen Y. J., Lin S. P. Molecular basis of spinal muscular atrophy in Chinese. Am J Hum Genet. 1995 Dec;57(6):1503–1505. [PMC free article] [PubMed] [Google Scholar]
  10. Chen Q., Baird S. D., Mahadevan M., Besner-Johnston A., Farahani R., Xuan J., Kang X., Lefebvre C., Ikeda J. E., Korneluk R. G. Sequence of a 131-kb region of 5q13.1 containing the spinal muscular atrophy candidate genes SMN and NAIP. Genomics. 1998 Feb 15;48(1):121–127. doi: 10.1006/geno.1997.5141. [DOI] [PubMed] [Google Scholar]
  11. Cobben J. M., van der Steege G., Grootscholten P., de Visser M., Scheffer H., Buys C. H. Deletions of the survival motor neuron gene in unaffected siblings of patients with spinal muscular atrophy. Am J Hum Genet. 1995 Oct;57(4):805–808. [PMC free article] [PubMed] [Google Scholar]
  12. Collier S., Tassabehji M., Sinnott P., Strachan T. A de novo pathological point mutation at the 21-hydroxylase locus: implications for gene conversion in the human genome. Nat Genet. 1993 Mar;3(3):260–265. doi: 10.1038/ng0393-260. [DOI] [PubMed] [Google Scholar]
  13. DiDonato C. J., Ingraham S. E., Mendell J. R., Prior T. W., Lenard S., Moxley R. T., 3rd, Florence J., Burghes A. H. Deletion and conversion in spinal muscular atrophy patients: is there a relationship to severity? Ann Neurol. 1997 Feb;41(2):230–237. doi: 10.1002/ana.410410214. [DOI] [PubMed] [Google Scholar]
  14. DiDonato C. J., Morgan K., Carpten J. D., Fuerst P., Ingraham S. E., Prescott G., McPherson J. D., Wirth B., Zerres K., Hurko O. Association between Ag1-CA alleles and severity of autosomal recessive proximal spinal muscular atrophy. Am J Hum Genet. 1994 Dec;55(6):1218–1229. [PMC free article] [PubMed] [Google Scholar]
  15. Fischer U., Liu Q., Dreyfuss G. The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell. 1997 Sep 19;90(6):1023–1029. doi: 10.1016/s0092-8674(00)80368-2. [DOI] [PubMed] [Google Scholar]
  16. Hahnen E., Forkert R., Marke C., Rudnik-Schöneborn S., Schönling J., Zerres K., Wirth B. Molecular analysis of candidate genes on chromosome 5q13 in autosomal recessive spinal muscular atrophy: evidence of homozygous deletions of the SMN gene in unaffected individuals. Hum Mol Genet. 1995 Oct;4(10):1927–1933. doi: 10.1093/hmg/4.10.1927. [DOI] [PubMed] [Google Scholar]
  17. Hahnen E., Schönling J., Rudnik-Schöneborn S., Zerres K., Wirth B. Hybrid survival motor neuron genes in patients with autosomal recessive spinal muscular atrophy: new insights into molecular mechanisms responsible for the disease. Am J Hum Genet. 1996 Nov;59(5):1057–1065. [PMC free article] [PubMed] [Google Scholar]
  18. Harteveld K. L., Losekoot M., Fodde R., Giordano P. C., Bernini L. F. The involvement of Alu repeats in recombination events at the alpha-globin gene cluster: characterization of two alphazero-thalassaemia deletion breakpoints. Hum Genet. 1997 Apr;99(4):528–534. doi: 10.1007/s004390050401. [DOI] [PubMed] [Google Scholar]
  19. Lefebvre S., Bürglen L., Reboullet S., Clermont O., Burlet P., Viollet L., Benichou B., Cruaud C., Millasseau P., Zeviani M. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995 Jan 13;80(1):155–165. doi: 10.1016/0092-8674(95)90460-3. [DOI] [PubMed] [Google Scholar]
  20. Liu Q., Fischer U., Wang F., Dreyfuss G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell. 1997 Sep 19;90(6):1013–1021. doi: 10.1016/s0092-8674(00)80367-0. [DOI] [PubMed] [Google Scholar]
  21. Lorson C. L., Strasswimmer J., Yao J. M., Baleja J. D., Hahnen E., Wirth B., Le T., Burghes A. H., Androphy E. J. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet. 1998 May;19(1):63–66. doi: 10.1038/ng0598-63. [DOI] [PubMed] [Google Scholar]
  22. McAndrew P. E., Parsons D. W., Simard L. R., Rochette C., Ray P. N., Mendell J. R., Prior T. W., Burghes A. H. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am J Hum Genet. 1997 Jun;60(6):1411–1422. doi: 10.1086/515465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Melki J., Lefebvre S., Burglen L., Burlet P., Clermont O., Millasseau P., Reboullet S., Bénichou B., Zeviani M., Le Paslier D. De novo and inherited deletions of the 5q13 region in spinal muscular atrophies. Science. 1994 Jun 3;264(5164):1474–1477. doi: 10.1126/science.7910982. [DOI] [PubMed] [Google Scholar]
  24. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nyström-Lahti M., Kristo P., Nicolaides N. C., Chang S. Y., Aaltonen L. A., Moisio A. L., Järvinen H. J., Mecklin J. P., Kinzler K. W., Vogelstein B. Founding mutations and Alu-mediated recombination in hereditary colon cancer. Nat Med. 1995 Nov;1(11):1203–1206. doi: 10.1038/nm1195-1203. [DOI] [PubMed] [Google Scholar]
  26. Parsons D. W., McAndrew P. E., Allinson P. S., Parker W. D., Jr, Burghes A. H., Prior T. W. Diagnosis of spinal muscular atrophy in an SMN non-deletion patient using a quantitative PCR screen and mutation analysis. J Med Genet. 1998 Aug;35(8):674–676. doi: 10.1136/jmg.35.8.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Parsons D. W., McAndrew P. E., Monani U. R., Mendell J. R., Burghes A. H., Prior T. W. An 11 base pair duplication in exon 6 of the SMN gene produces a type I spinal muscular atrophy (SMA) phenotype: further evidence for SMN as the primary SMA-determining gene. Hum Mol Genet. 1996 Nov;5(11):1727–1732. doi: 10.1093/hmg/5.11.1727. [DOI] [PubMed] [Google Scholar]
  28. Patrinos G. P., Kollia P., Loutradi-Anagnostou A., Loukopoulos D., Papadakis M. N. The Cretan type of non-deletional hereditary persistence of fetal hemoglobin [A gamma-158C-->T] results from two independent gene conversion events. Hum Genet. 1998 Jun;102(6):629–634. doi: 10.1007/s004390050753. [DOI] [PubMed] [Google Scholar]
  29. Petrij-Bosch A., Peelen T., van Vliet M., van Eijk R., Olmer R., Drüsedau M., Hogervorst F. B., Hageman S., Arts P. J., Ligtenberg M. J. BRCA1 genomic deletions are major founder mutations in Dutch breast cancer patients. Nat Genet. 1997 Nov;17(3):341–345. doi: 10.1038/ng1197-341. [DOI] [PubMed] [Google Scholar]
  30. Raclin V., Veber P. S., Bürglen L., Munnich A., Melki J. De novo deletions in spinal muscular atrophy: implications for genetic counselling. J Med Genet. 1997 Jan;34(1):86–87. doi: 10.1136/jmg.34.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rochette C. F., Surh L. C., Ray P. N., McAndrew P. E., Prior T. W., Burghes A. H., Vanasse M., Simard L. R. Molecular diagnosis of non-deletion SMA patients using quantitative PCR of SMN exon 7. Neurogenetics. 1997 Sep;1(2):141–147. doi: 10.1007/s100480050021. [DOI] [PubMed] [Google Scholar]
  32. Rodrigues N. R., Owen N., Talbot K., Ignatius J., Dubowitz V., Davies K. E. Deletions in the survival motor neuron gene on 5q13 in autosomal recessive spinal muscular atrophy. Hum Mol Genet. 1995 Apr;4(4):631–634. doi: 10.1093/hmg/4.4.631. [DOI] [PubMed] [Google Scholar]
  33. Roy N., Mahadevan M. S., McLean M., Shutler G., Yaraghi Z., Farahani R., Baird S., Besner-Johnston A., Lefebvre C., Kang X. The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell. 1995 Jan 13;80(1):167–178. doi: 10.1016/0092-8674(95)90461-1. [DOI] [PubMed] [Google Scholar]
  34. Rüdiger N. S., Gregersen N., Kielland-Brandt M. C. One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res. 1995 Jan 25;23(2):256–260. doi: 10.1093/nar/23.2.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Scharf J. M., Endrizzi M. G., Wetter A., Huang S., Thompson T. G., Zerres K., Dietrich W. F., Wirth B., Kunkel L. M. Identification of a candidate modifying gene for spinal muscular atrophy by comparative genomics. Nat Genet. 1998 Sep;20(1):83–86. doi: 10.1038/1753. [DOI] [PubMed] [Google Scholar]
  36. Schrank B., Götz R., Gunnersen J. M., Ure J. M., Toyka K. V., Smith A. G., Sendtner M. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9920–9925. doi: 10.1073/pnas.94.18.9920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Simard L. R., Rochette C., Semionov A., Morgan K., Vanasse M. SMN(T) and NAIP mutations in Canadian families with spinal muscular atrophy (SMA): genotype/phenotype correlations with disease severity. Am J Med Genet. 1997 Oct 3;72(1):51–58. doi: 10.1002/(sici)1096-8628(19971003)72:1<51::aid-ajmg11>3.0.co;2-t. [DOI] [PubMed] [Google Scholar]
  38. Talbot K., Ponting C. P., Theodosiou A. M., Rodrigues N. R., Surtees R., Mountford R., Davies K. E. Missense mutation clustering in the survival motor neuron gene: a role for a conserved tyrosine and glycine rich region of the protein in RNA metabolism? Hum Mol Genet. 1997 Mar;6(3):497–500. doi: 10.1093/hmg/6.3.497. [DOI] [PubMed] [Google Scholar]
  39. Velasco E., Valero C., Valero A., Moreno F., Hernández-Chico C. Molecular analysis of the SMN and NAIP genes in Spanish spinal muscular atrophy (SMA) families and correlation between number of copies of cBCD541 and SMA phenotype. Hum Mol Genet. 1996 Feb;5(2):257–263. doi: 10.1093/hmg/5.2.257. [DOI] [PubMed] [Google Scholar]
  40. Wang C. H., Papendick B. D., Bruinsma P., Day J. K. Identification of a novel missense mutation of the SMN(T) gene in two siblings with spinal muscular atrophy. Neurogenetics. 1998 Aug;1(4):273–276. doi: 10.1007/s100480050040. [DOI] [PubMed] [Google Scholar]
  41. Wang C. H., Xu J., Carter T. A., Ross B. M., Dominski M. K., Bellcross C. A., Penchaszadeh G. K., Munsat T. L., Gilliam T. C. Characterization of survival motor neuron (SMNT) gene deletions in asymptomatic carriers of spinal muscular atrophy. Hum Mol Genet. 1996 Mar;5(3):359–365. doi: 10.1093/hmg/5.3.359. [DOI] [PubMed] [Google Scholar]
  42. Wirth B., Hahnen E., Morgan K., DiDonato C. J., Dadze A., Rudnik-Schöneborn S., Simard L. R., Zerres K., Burghes A. H. Allelic association and deletions in autosomal recessive proximal spinal muscular atrophy: association of marker genotype with disease severity and candidate cDNAs. Hum Mol Genet. 1995 Aug;4(8):1273–1284. doi: 10.1093/hmg/4.8.1273. [DOI] [PubMed] [Google Scholar]
  43. Wirth B., Schmidt T., Hahnen E., Rudnik-Schöneborn S., Krawczak M., Müller-Myhsok B., Schönling J., Zerres K. De novo rearrangements found in 2% of index patients with spinal muscular atrophy: mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling. Am J Hum Genet. 1997 Nov;61(5):1102–1111. doi: 10.1086/301608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zerres K., Rudnik-Schöneborn S. Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol. 1995 May;52(5):518–523. doi: 10.1001/archneur.1995.00540290108025. [DOI] [PubMed] [Google Scholar]
  45. Zielenski J., Rozmahel R., Bozon D., Kerem B., Grzelczak Z., Riordan J. R., Rommens J., Tsui L. C. Genomic DNA sequence of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics. 1991 May;10(1):214–228. doi: 10.1016/0888-7543(91)90503-7. [DOI] [PubMed] [Google Scholar]
  46. van der Steege G., Grootscholten P. M., Cobben J. M., Zappata S., Scheffer H., den Dunnen J. T., van Ommen G. J., Brahe C., Buys C. H. Apparent gene conversions involving the SMN gene in the region of the spinal muscular atrophy locus on chromosome 5. Am J Hum Genet. 1996 Oct;59(4):834–838. [PMC free article] [PubMed] [Google Scholar]
  47. van der Steege G., Grootscholten P. M., van der Vlies P., Draaijers T. G., Osinga J., Cobben J. M., Scheffer H., Buys C. H. PCR-based DNA test to confirm clinical diagnosis of autosomal recessive spinal muscular atrophy. Lancet. 1995 Apr 15;345(8955):985–986. [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES