Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 May;64(5):1357–1364. doi: 10.1086/302383

Connexin46 mutations in autosomal dominant congenital cataract.

D Mackay 1, A Ionides 1, Z Kibar 1, G Rouleau 1, V Berry 1, A Moore 1, A Shiels 1, S Bhattacharya 1
PMCID: PMC1377871  PMID: 10205266

Abstract

Loci for autosomal dominant "zonular pulverulent" cataract have been mapped to chromosomes 1q (CZP1) and 13q (CZP3). Here we report genetic refinement of the CZP3 locus and identify underlying mutations in the gene for gap-junction protein alpha-3 (GJA3), or connexin46 (Cx46). Linkage analysis gave a significantly positive two-point LOD score (Z) at marker D13S175 (maximum Z [Zmax]=>7.0; maximum recombination frequency [thetamax] =0). Haplotyping indicated that CZP3 probably lies in the genetic interval D13S1236-D13S175-D13S1316-cen-13pter, close to GJA3. Sequencing of a genomic clone isolated from the CZP3 candidate region identified an open reading frame coding for a protein of 435 amino acids (47,435 D) that shared approximately 88% homology with rat Cx46. Mutation analysis of GJA3 in two families with CZP3 detected distinct sequence changes that were not present in a panel of 105 normal, unrelated individuals. In family B, an A-->G transition resulted in an asparagine-to-serine substitution at codon 63 (N63S) and introduced a novel MwoI restriction site. In family E, insertion of a C at nucleotide 1137 (1137insC) introduced a novel BstXI site, causing a frameshift at codon 380. Restriction analysis confirmed that the novel MwoI and BstXI sites cosegregated with the disease in families B and E, respectively. This study identifies GJA3 as the sixth member of the connexin gene family to be implicated in human disease, and it highlights the physiological importance of gap-junction communication in the development of a transparent eye lens.

Full Text

The Full Text of this article is available as a PDF (703.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Armitage M. M., Kivlin J. D., Ferrell R. E. A progressive early onset cataract gene maps to human chromosome 17q24. Nat Genet. 1995 Jan;9(1):37–40. doi: 10.1038/ng0195-37. [DOI] [PubMed] [Google Scholar]
  3. Attwood J., Bryant S. A computer program to make linkage analysis with LIPED and LINKAGE easier to perform and less prone to input errors. Ann Hum Genet. 1988 Jul;52(Pt 3):259–259. doi: 10.1111/j.1469-1809.1988.tb01103.x. [DOI] [PubMed] [Google Scholar]
  4. Bergoffen J., Scherer S. S., Wang S., Scott M. O., Bone L. J., Paul D. L., Chen K., Lensch M. W., Chance P. F., Fischbeck K. H. Connexin mutations in X-linked Charcot-Marie-Tooth disease. Science. 1993 Dec 24;262(5142):2039–2042. doi: 10.1126/science.8266101. [DOI] [PubMed] [Google Scholar]
  5. Berry V., Ionides A. C., Moore A. T., Plant C., Bhattacharya S. S., Shiels A. A locus for autosomal dominant anterior polar cataract on chromosome 17p. Hum Mol Genet. 1996 Mar;5(3):415–419. doi: 10.1093/hmg/5.3.415. [DOI] [PubMed] [Google Scholar]
  6. Brakenhoff R. H., Henskens H. A., van Rossum M. W., Lubsen N. H., Schoenmakers J. G. Activation of the gamma E-crystallin pseudogene in the human hereditary Coppock-like cataract. Hum Mol Genet. 1994 Feb;3(2):279–283. doi: 10.1093/hmg/3.2.279. [DOI] [PubMed] [Google Scholar]
  7. Britz-Cunningham S. H., Shah M. M., Zuppan C. W., Fletcher W. H. Mutations of the Connexin43 gap-junction gene in patients with heart malformations and defects of laterality. N Engl J Med. 1995 May 18;332(20):1323–1329. doi: 10.1056/NEJM199505183322002. [DOI] [PubMed] [Google Scholar]
  8. Denoyelle F., Lina-Granade G., Plauchu H., Bruzzone R., Chaïb H., Lévi-Acobas F., Weil D., Petit C. Connexin 26 gene linked to a dominant deafness. Nature. 1998 May 28;393(6683):319–320. doi: 10.1038/30639. [DOI] [PubMed] [Google Scholar]
  9. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  10. Eiberg H., Lund A. M., Warburg M., Rosenberg T. Assignment of congenital cataract Volkmann type (CCV) to chromosome 1p36. Hum Genet. 1995 Jul;96(1):33–38. doi: 10.1007/BF00214183. [DOI] [PubMed] [Google Scholar]
  11. Eiberg H., Marner E., Rosenberg T., Mohr J. Marner's cataract (CAM) assigned to chromosome 16: linkage to haptoglobin. Clin Genet. 1988 Oct;34(4):272–275. doi: 10.1111/j.1399-0004.1988.tb02875.x. [DOI] [PubMed] [Google Scholar]
  12. Gong X., Li E., Klier G., Huang Q., Wu Y., Lei H., Kumar N. M., Horwitz J., Gilula N. B. Disruption of alpha3 connexin gene leads to proteolysis and cataractogenesis in mice. Cell. 1997 Dec 12;91(6):833–843. doi: 10.1016/s0092-8674(00)80471-7. [DOI] [PubMed] [Google Scholar]
  13. Hejtmancik J. F. The genetics of cataract: our vision becomes clearer. Am J Hum Genet. 1998 Mar;62(3):520–525. doi: 10.1086/301774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ionides A. C., Berry V., Mackay D. S., Moore A. T., Bhattacharya S. S., Shiels A. A locus for autosomal dominant posterior polar cataract on chromosome 1p. Hum Mol Genet. 1997 Jan;6(1):47–51. doi: 10.1093/hmg/6.1.47. [DOI] [PubMed] [Google Scholar]
  15. Jiang J. X., Goodenough D. A. Heteromeric connexons in lens gap junction channels. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1287–1291. doi: 10.1073/pnas.93.3.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kelley P. M., Harris D. J., Comer B. C., Askew J. W., Fowler T., Smith S. D., Kimberling W. J. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet. 1998 Apr;62(4):792–799. doi: 10.1086/301807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kelsell D. P., Dunlop J., Stevens H. P., Lench N. J., Liang J. N., Parry G., Mueller R. F., Leigh I. M. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997 May 1;387(6628):80–83. doi: 10.1038/387080a0. [DOI] [PubMed] [Google Scholar]
  18. Kibar Z., Der Kaloustian V. M., Brais B., Hani V., Fraser F. C., Rouleau G. A. The gene responsible for Clouston hidrotic ectodermal dysplasia maps to the pericentromeric region of chromosome 13q. Hum Mol Genet. 1996 Apr;5(4):543–547. doi: 10.1093/hmg/5.4.543. [DOI] [PubMed] [Google Scholar]
  19. Krawczak M., Cooper D. N. The human gene mutation database. Trends Genet. 1997 Mar;13(3):121–122. doi: 10.1016/s0168-9525(97)01068-8. [DOI] [PubMed] [Google Scholar]
  20. Lambert S. R., Drack A. V. Infantile cataracts. Surv Ophthalmol. 1996 May-Jun;40(6):427–458. doi: 10.1016/s0039-6257(96)82011-x. [DOI] [PubMed] [Google Scholar]
  21. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3443–3446. doi: 10.1073/pnas.81.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Litt M., Carrero-Valenzuela R., LaMorticella D. M., Schultz D. W., Mitchell T. N., Kramer P., Maumenee I. H. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human beta-crystallin gene CRYBB2. Hum Mol Genet. 1997 May;6(5):665–668. doi: 10.1093/hmg/6.5.665. [DOI] [PubMed] [Google Scholar]
  23. Litt M., Kramer P., LaMorticella D. M., Murphey W., Lovrien E. W., Weleber R. G. Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum Mol Genet. 1998 Mar;7(3):471–474. doi: 10.1093/hmg/7.3.471. [DOI] [PubMed] [Google Scholar]
  24. Mackay D., Ionides A., Berry V., Moore A., Bhattacharya S., Shiels A. A new locus for dominant "zonular pulverulent" cataract, on chromosome 13. Am J Hum Genet. 1997 Jun;60(6):1474–1478. doi: 10.1086/515468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mignon C., Fromaget C., Mattei M. G., Gros D., Yamasaki H., Mesnil M. Assignment of connexin 26 (GJB2) and 46 (GJA3) genes to human chromosome 13q11-->q12 and mouse chromosome 14D1-E1 by in situ hybridization. Cytogenet Cell Genet. 1996;72(2-3):185–186. doi: 10.1159/000134183. [DOI] [PubMed] [Google Scholar]
  26. Paul D. L., Ebihara L., Takemoto L. J., Swenson K. I., Goodenough D. A. Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes. J Cell Biol. 1991 Nov;115(4):1077–1089. doi: 10.1083/jcb.115.4.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Richard G., Smith L. E., Bailey R. A., Itin P., Hohl D., Epstein E. H., Jr, DiGiovanna J. J., Compton J. G., Bale S. J. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet. 1998 Dec;20(4):366–369. doi: 10.1038/3840. [DOI] [PubMed] [Google Scholar]
  28. Shiels A., Mackay D., Ionides A., Berry V., Moore A., Bhattacharya S. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant "zonular pulverulent" cataract, on chromosome 1q. Am J Hum Genet. 1998 Mar;62(3):526–532. doi: 10.1086/301762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Simon A. M., Goodenough D. A. Diverse functions of vertebrate gap junctions. Trends Cell Biol. 1998 Dec;8(12):477–483. doi: 10.1016/s0962-8924(98)01372-5. [DOI] [PubMed] [Google Scholar]
  30. Steele E. C., Jr, Lyon M. F., Favor J., Guillot P. V., Boyd Y., Church R. L. A mutation in the connexin 50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr Eye Res. 1998 Sep;17(9):883–889. doi: 10.1076/ceyr.17.9.883.5144. [DOI] [PubMed] [Google Scholar]
  31. Stephan D. A., Gillanders E., Vanderveen D., Freas-Lutz D., Wistow G., Baxevanis A. D., Robbins C. M., VanAuken A., Quesenberry M. I., Bailey-Wilson J. Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc Natl Acad Sci U S A. 1999 Feb 2;96(3):1008–1012. doi: 10.1073/pnas.96.3.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Taylor T. D., Hayflick S. J., McKinnon W., Guttmacher A. E., Hovnanian A., Litt M., Zonana J. Confirmation of linkage of Clouston syndrome (hidrotic ectodermal dysplasia) to 13q11-q12.1 with evidence for multiple independent mutations. J Invest Dermatol. 1998 Jul;111(1):83–85. doi: 10.1046/j.1523-1747.1998.00245.x. [DOI] [PubMed] [Google Scholar]
  33. Tóth T., Hajdú J., Marton T., Nagy B., Papp Z. connexin43 gene mutations and heterotaxy. Circulation. 1998 Jan 6;97(1):117–118. [PubMed] [Google Scholar]
  34. White T. W., Bruzzone R., Wolfram S., Paul D. L., Goodenough D. A. Selective interactions among the multiple connexin proteins expressed in the vertebrate lens: the second extracellular domain is a determinant of compatibility between connexins. J Cell Biol. 1994 May;125(4):879–892. doi: 10.1083/jcb.125.4.879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. White T. W., Deans M. R., Kelsell D. P., Paul D. L. Connexin mutations in deafness. Nature. 1998 Aug 13;394(6694):630–631. doi: 10.1038/29202. [DOI] [PubMed] [Google Scholar]
  36. White T. W., Goodenough D. A., Paul D. L. Targeted ablation of connexin50 in mice results in microphthalmia and zonular pulverulent cataracts. J Cell Biol. 1998 Nov 2;143(3):815–825. doi: 10.1083/jcb.143.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xia J. H., Liu C. Y., Tang B. S., Pan Q., Huang L., Dai H. P., Zhang B. R., Xie W., Hu D. X., Zheng D. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet. 1998 Dec;20(4):370–373. doi: 10.1038/3845. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES