Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 May;64(5):1440–1444. doi: 10.1086/302380

Transmission of a fully functional human neocentromere through three generations.

C Tyler-Smith 1, G Gimelli 1, S Giglio 1, G Floridia 1, A Pandya 1, G Terzoli 1, P E Warburton 1, W C Earnshaw 1, O Zuffardi 1
PMCID: PMC1377882  PMID: 10205277

Abstract

An unusual Y chromosome with a primary constriction inside the long-arm heterochromatin was found in the amniocytes of a 38-year-old woman. The same Y chromosome was found in her husband and brother-in-law, thus proving that it was already present in the father. FISH with alphoid DNA showed hybridization signals at the usual position of the Y centromere but not at the primary constriction. Centromere proteins (CENP)-A, CENP-C, and CENP-E could not be detected at the site of the canonic centromere but were present at the new constriction, whereas CENP-B was not detected on this Y chromosome. Experiments with 82 Y-specific loci distributed throughout the chromosome confirmed that no gross deletion or rearrangement had taken place, and that the Y chromosome belonged to a haplogroup whose members have a mean alphoid array of 770 kb (range 430-1,600 kb), whereas that of this case was approximately 250 kb. Thus, this Y chromosome appeared to be deleted for part of the alphoid DNA. It seems likely that this deletion was responsible for the silencing of the normal centromere and that the activation of the neocentromere prevented the loss of this chromosome. Alternatively, neocentromere activation could have occurred first and stimulated inactivation of the normal centromere by partial deletion. Whatever the mechanism, the presence of this chromosome in three generations demonstrates that it functions sufficiently well in mitosis for male sex determination and fertility and that neocentromeres can be transmitted normally at meiosis.

Full Text

The Full Text of this article is available as a PDF (390.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bukvic N., Susca F., Gentile M., Tangari E., Ianniruberto A., Guanti G. An unusual dicentric Y chromosome with a functional centromere with no detectable alpha-satellite. Hum Genet. 1996 Apr;97(4):453–456. doi: 10.1007/BF02267065. [DOI] [PubMed] [Google Scholar]
  2. Casanova M., Leroy P., Boucekkine C., Weissenbach J., Bishop C., Fellous M., Purrello M., Fiori G., Siniscalco M. A human Y-linked DNA polymorphism and its potential for estimating genetic and evolutionary distance. Science. 1985 Dec 20;230(4732):1403–1406. doi: 10.1126/science.2999986. [DOI] [PubMed] [Google Scholar]
  3. Choo K. H. Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet. 1997 Dec;61(6):1225–1233. doi: 10.1086/301657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Csink A. K., Henikoff S. Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 1998 May;14(5):200–204. doi: 10.1016/s0168-9525(98)01444-9. [DOI] [PubMed] [Google Scholar]
  5. Earnshaw W. C., Ratrie H., 3rd, Stetten G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma. 1989 Jun;98(1):1–12. doi: 10.1007/BF00293329. [DOI] [PubMed] [Google Scholar]
  6. Earnshaw W. C., Sullivan K. F., Machlin P. S., Cooke C. A., Kaiser D. A., Pollard T. D., Rothfield N. F., Cleveland D. W. Molecular cloning of cDNA for CENP-B, the major human centromere autoantigen. J Cell Biol. 1987 Apr;104(4):817–829. doi: 10.1083/jcb.104.4.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fisher A. M., Al-Gazali L., Pramathan T., Quaife R., Cockwell A. E., Barber J. C., Earnshaw W. C., Axelman J., Migeon B. R., Tyler-Smith C. Centromeric inactivation in a dicentric human Y;21 translocation chromosome. Chromosoma. 1997 Sep;106(4):199–206. doi: 10.1007/s004120050240. [DOI] [PubMed] [Google Scholar]
  8. Haaf T., Schmid M. Centromeric association and non-random distribution of centromeres in human tumour cells. Hum Genet. 1989 Jan;81(2):137–143. doi: 10.1007/BF00293889. [DOI] [PubMed] [Google Scholar]
  9. Karpen G. H., Allshire R. C. The case for epigenetic effects on centromere identity and function. Trends Genet. 1997 Dec;13(12):489–496. doi: 10.1016/s0168-9525(97)01298-5. [DOI] [PubMed] [Google Scholar]
  10. Kwok C., Tyler-Smith C., Mendonca B. B., Hughes I., Berkovitz G. D., Goodfellow P. N., Hawkins J. R. Mutation analysis of the 2 kb 5' to SRY in XY females and XY intersex subjects. J Med Genet. 1996 Jun;33(6):465–468. doi: 10.1136/jmg.33.6.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mathias N., Bayés M., Tyler-Smith C. Highly informative compound haplotypes for the human Y chromosome. Hum Mol Genet. 1994 Jan;3(1):115–123. doi: 10.1093/hmg/3.1.115. [DOI] [PubMed] [Google Scholar]
  12. Palmer D. K., O'Day K., Margolis R. L. The centromere specific histone CENP-A is selectively retained in discrete foci in mammalian sperm nuclei. Chromosoma. 1990 Dec;100(1):32–36. doi: 10.1007/BF00337600. [DOI] [PubMed] [Google Scholar]
  13. Rossi E., Faiella A., Zeviani M., Labeit S., Floridia G., Brunelli S., Cammarata M., Boncinelli E., Zuffardi O. Order of six loci at 2q24-q31 and orientation of the HOXD locus. Genomics. 1994 Nov 1;24(1):34–40. doi: 10.1006/geno.1994.1579. [DOI] [PubMed] [Google Scholar]
  14. Saitoh H., Tomkiel J., Cooke C. A., Ratrie H., 3rd, Maurer M., Rothfield N. F., Earnshaw W. C. CENP-C, an autoantigen in scleroderma, is a component of the human inner kinetochore plate. Cell. 1992 Jul 10;70(1):115–125. doi: 10.1016/0092-8674(92)90538-n. [DOI] [PubMed] [Google Scholar]
  15. Tyler-Smith C., Corish P., Burns E. Neocentromeres, the Y chromosome and centromere evolution. Chromosome Res. 1998 Jan;6(1):65–67. doi: 10.1023/a:1017102926419. [DOI] [PubMed] [Google Scholar]
  16. Tyler-Smith C., Oakey R. J., Larin Z., Fisher R. B., Crocker M., Affara N. A., Ferguson-Smith M. A., Muenke M., Zuffardi O., Jobling M. A. Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes. Nat Genet. 1993 Dec;5(4):368–375. doi: 10.1038/ng1293-368. [DOI] [PubMed] [Google Scholar]
  17. Vafa O., Sullivan K. F. Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr Biol. 1997 Nov 1;7(11):897–900. doi: 10.1016/s0960-9822(06)00381-2. [DOI] [PubMed] [Google Scholar]
  18. Warburton P. E., Cooke C. A., Bourassa S., Vafa O., Sullivan B. A., Stetten G., Gimelli G., Warburton D., Tyler-Smith C., Sullivan K. F. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol. 1997 Nov 1;7(11):901–904. doi: 10.1016/s0960-9822(06)00382-4. [DOI] [PubMed] [Google Scholar]
  19. Williams B. C., Murphy T. D., Goldberg M. L., Karpen G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet. 1998 Jan;18(1):30–37. doi: 10.1038/ng0198-30. [DOI] [PubMed] [Google Scholar]
  20. Yen T. J., Li G., Schaar B. T., Szilak I., Cleveland D. W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature. 1992 Oct 8;359(6395):536–539. doi: 10.1038/359536a0. [DOI] [PubMed] [Google Scholar]
  21. du Sart D., Cancilla M. R., Earle E., Mao J. I., Saffery R., Tainton K. M., Kalitsis P., Martyn J., Barry A. E., Choo K. H. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet. 1997 Jun;16(2):144–153. doi: 10.1038/ng0697-144. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES