Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 May;64(5):1453–1463. doi: 10.1086/302365

Genomewide scan for familial combined hyperlipidemia genes in finnish families, suggesting multiple susceptibility loci influencing triglyceride, cholesterol, and apolipoprotein B levels.

P Pajukanta 1, J D Terwilliger 1, M Perola 1, T Hiekkalinna 1, I Nuotio 1, P Ellonen 1, M Parkkonen 1, J Hartiala 1, K Ylitalo 1, J Pihlajamäki 1, K Porkka 1, M Laakso 1, J Viikari 1, C Ehnholm 1, M R Taskinen 1, L Peltonen 1
PMCID: PMC1377884  PMID: 10205279

Abstract

Familial combined hyperlipidemia (FCHL) is a common dyslipidemia predisposing to premature coronary heart disease (CHD). The disease is characterized by increased levels of serum total cholesterol (TC), triglycerides (TGs), or both. We recently localized the first locus for FCHL, on chromosome 1q21-q23. In the present study, a genomewide screen for additional FCHL loci was performed. In stage 1, we genotyped 368 polymorphic markers in 35 carefully characterized Finnish FCHL families. We identified six chromosomal regions with markers showing LOD score (Z) values >1.0, by using a dominant mode of inheritance for the FCHL trait. In addition, two more regions emerged showing Z>2.0 with a TG trait. In stage 2, we genotyped 26 more markers and seven additional FCHL families for these interesting regions. Two chromosomal regions revealed Z>2.0 in the linkage analysis: 10p11.2, Z=3.20 (theta=.00), with the TG trait; and 21q21, Z=2.24 (theta=.10), with the apoB trait. Furthermore, two more chromosomal regions produced Z>2.0 in the affected-sib-pair analysis: 10q11.2-10qter produced Z=2.59 with the TC trait and Z=2.29 with FCHL, and 2q31 produced Z=2.25 with the TG trait. Our results suggest additional putative loci influencing FCHL in Finnish families, some potentially affecting TG levels and some potentially affecting TC or apoB levels.

Full Text

The Full Text of this article is available as a PDF (293.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitman T. J., Godsland I. F., Farren B., Crook D., Wong H. J., Scott J. Defects of insulin action on fatty acid and carbohydrate metabolism in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 1997 Apr;17(4):748–754. doi: 10.1161/01.atv.17.4.748. [DOI] [PubMed] [Google Scholar]
  2. Argraves W. S., Suzuki S., Arai H., Thompson K., Pierschbacher M. D., Ruoslahti E. Amino acid sequence of the human fibronectin receptor. J Cell Biol. 1987 Sep;105(3):1183–1190. doi: 10.1083/jcb.105.3.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arner P. Is familial combined hyperlipidaemia a genetic disorder of adipose tissue? Curr Opin Lipidol. 1997 Apr;8(2):89–94. doi: 10.1097/00041433-199704000-00006. [DOI] [PubMed] [Google Scholar]
  4. Baekkeskov S., Aanstoot H. J., Christgau S., Reetz A., Solimena M., Cascalho M., Folli F., Richter-Olesen H., De Camilli P., Camilli P. D. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990 Sep 13;347(6289):151–156. doi: 10.1038/347151a0. [DOI] [PubMed] [Google Scholar]
  5. Castro Cabezas M., de Bruin T. W., de Valk H. W., Shoulders C. C., Jansen H., Willem Erkelens D. Impaired fatty acid metabolism in familial combined hyperlipidemia. A mechanism associating hepatic apolipoprotein B overproduction and insulin resistance. J Clin Invest. 1993 Jul;92(1):160–168. doi: 10.1172/JCI116544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cottingham R. W., Jr, Idury R. M., Schäffer A. A. Faster sequential genetic linkage computations. Am J Hum Genet. 1993 Jul;53(1):252–263. [PMC free article] [PubMed] [Google Scholar]
  7. Cullen P., Farren B., Scott J., Farrall M. Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia. Arterioscler Thromb. 1994 Aug;14(8):1233–1249. doi: 10.1161/01.atv.14.8.1233. [DOI] [PubMed] [Google Scholar]
  8. Cuthbert J. A., East C. A., Bilheimer D. W., Lipsky P. E. Detection of familial hypercholesterolemia by assaying functional low-density-lipoprotein receptors on lymphocytes. N Engl J Med. 1986 Apr 3;314(14):879–883. doi: 10.1056/NEJM198604033141404. [DOI] [PubMed] [Google Scholar]
  9. Dallinga-Thie G. M., van Linde-Sibenius Trip M., Rotter J. I., Cantor R. M., Bu X., Lusis A. J., de Bruin T. W. Complex genetic contribution of the Apo AI-CIII-AIV gene cluster to familial combined hyperlipidemia. Identification of different susceptibility haplotypes. J Clin Invest. 1997 Mar 1;99(5):953–961. doi: 10.1172/JCI119260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  11. Gagné E., Genest J., Jr, Zhang H., Clarke L. A., Hayden M. R. Analysis of DNA changes in the LPL gene in patients with familial combined hyperlipidemia. Arterioscler Thromb. 1994 Aug;14(8):1250–1257. doi: 10.1161/01.atv.14.8.1250. [DOI] [PubMed] [Google Scholar]
  12. Genest J. J., Jr, Martin-Munley S. S., McNamara J. R., Ordovas J. M., Jenner J., Myers R. H., Silberman S. R., Wilson P. W., Salem D. N., Schaefer E. J. Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation. 1992 Jun;85(6):2025–2033. doi: 10.1161/01.cir.85.6.2025. [DOI] [PubMed] [Google Scholar]
  13. Ginns E. I., Ott J., Egeland J. A., Allen C. R., Fann C. S., Pauls D. L., Weissenbachoff J., Carulli J. P., Falls K. M., Keith T. P. A genome-wide search for chromosomal loci linked to bipolar affective disorder in the Old Order Amish. Nat Genet. 1996 Apr;12(4):431–435. doi: 10.1038/ng0496-431. [DOI] [PubMed] [Google Scholar]
  14. Goldstein J. L., Schrott H. G., Hazzard W. R., Bierman E. L., Motulsky A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973 Jul;52(7):1544–1568. doi: 10.1172/JCI107332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hall J. M., Lee M. K., Newman B., Morrow J. E., Anderson L. A., Huey B., King M. C. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990 Dec 21;250(4988):1684–1689. doi: 10.1126/science.2270482. [DOI] [PubMed] [Google Scholar]
  16. Hanis C. L., Boerwinkle E., Chakraborty R., Ellsworth D. L., Concannon P., Stirling B., Morrison V. A., Wapelhorst B., Spielman R. S., Gogolin-Ewens K. J. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet. 1996 Jun;13(2):161–166. doi: 10.1038/ng0696-161. [DOI] [PubMed] [Google Scholar]
  17. Hästbacka J., de la Chapelle A., Kaitila I., Sistonen P., Weaver A., Lander E. Linkage disequilibrium mapping in isolated founder populations: diastrophic dysplasia in Finland. Nat Genet. 1992 Nov;2(3):204–211. doi: 10.1038/ng1192-204. [DOI] [PubMed] [Google Scholar]
  18. Jarvik G. P., Brunzell J. D., Austin M. A., Krauss R. M., Motulsky A. G., Wijsman E. Genetic predictors of FCHL in four large pedigrees. Influence of ApoB level major locus predicted genotype and LDL subclass phenotype. Arterioscler Thromb. 1994 Nov;14(11):1687–1694. doi: 10.1161/01.atv.14.11.1687. [DOI] [PubMed] [Google Scholar]
  19. Juo S. H., Bredie S. J., Kiemeney L. A., Demacker P. N., Stalenhoef A. F. A common genetic mechanism determines plasma apolipoprotein B levels and dense LDL subfraction distribution in familial combined hyperlipidemia. Am J Hum Genet. 1998 Aug;63(2):586–594. doi: 10.1086/301962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaufmann N. A., Dennis B. H., Heiss G., Friedlander Y., Kark J. D., Stein Y. Comparison of nutrient intakes of selected populations in the United States and Israel: the Lipid Research Clinics prevalence study. Am J Clin Nutr. 1986 Apr;43(4):604–620. doi: 10.1093/ajcn/43.4.604. [DOI] [PubMed] [Google Scholar]
  21. Kuokkanen S., Sundvall M., Terwilliger J. D., Tienari P. J., Wikström J., Holmdahl R., Pettersson U., Peltonen L. A putative vulnerability locus to multiple sclerosis maps to 5p14-p12 in a region syntenic to the murine locus Eae2. Nat Genet. 1996 Aug;13(4):477–480. doi: 10.1038/ng0896-477. [DOI] [PubMed] [Google Scholar]
  22. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3443–3446. doi: 10.1073/pnas.81.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mahtani M. M., Widén E., Lehto M., Thomas J., McCarthy M., Brayer J., Bryant B., Chan G., Daly M., Forsblom C. Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nat Genet. 1996 Sep;14(1):90–94. doi: 10.1038/ng0996-90. [DOI] [PubMed] [Google Scholar]
  24. Marcil M., Boucher B., Gagné E., Davignon J., Hayden M., Genest J., Jr Lack of association of the apolipoprotein A-I-C-III-A-IV gene XmnI and SstI polymorphisms and of the lipoprotein lipase gene mutations in familial combined hyperlipoproteinemia in French Canadian subjects. J Lipid Res. 1996 Feb;37(2):309–319. [PubMed] [Google Scholar]
  25. Nikkilä E. A., Aro A. Family study of serum lipids and lipoproteins in coronary heart-disease. Lancet. 1973 May 5;1(7810):954–959. doi: 10.1016/s0140-6736(73)91598-5. [DOI] [PubMed] [Google Scholar]
  26. Pajukanta P., Nuotio I., Terwilliger J. D., Porkka K. V., Ylitalo K., Pihlajamäki J., Suomalainen A. J., Syvänen A. C., Lehtimäki T., Viikari J. S. Linkage of familial combined hyperlipidaemia to chromosome 1q21-q23. Nat Genet. 1998 Apr;18(4):369–373. doi: 10.1038/ng0498-369. [DOI] [PubMed] [Google Scholar]
  27. Peltonen L., Pekkarinen P., Aaltonen J. Messages from an isolate: lessons from the Finnish gene pool. Biol Chem Hoppe Seyler. 1995 Dec;376(12):697–704. doi: 10.1515/bchm3.1995.376.12.697. [DOI] [PubMed] [Google Scholar]
  28. Pericak-Vance M. A., Bebout J. L., Gaskell P. C., Jr, Yamaoka L. H., Hung W. Y., Alberts M. J., Walker A. P., Bartlett R. J., Haynes C. A., Welsh K. A. Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet. 1991 Jun;48(6):1034–1050. [PMC free article] [PubMed] [Google Scholar]
  29. Porkka K. V., Nuotio I., Pajukanta P., Ehnholm C., Suurinkeroinen L., Syvänne M., Lehtimäki T., Lahdenkari A. T., Lahdenperä S., Ylitalo K. Phenotype expression in familial combined hyperlipidemia. Atherosclerosis. 1997 Sep;133(2):245–253. doi: 10.1016/s0021-9150(97)00134-2. [DOI] [PubMed] [Google Scholar]
  30. Porkka K. V., Viikari J. S., Rönnemaa T., Marniemi J., Akerblom H. K. Age and gender specific serum lipid and apolipoprotein fractiles of Finnish children and young adults. The Cardiovascular Risk in Young Finns Study. Acta Paediatr. 1994 Aug;83(8):838–848. doi: 10.1111/j.1651-2227.1994.tb13155.x. [DOI] [PubMed] [Google Scholar]
  31. Reaven G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988 Dec;37(12):1595–1607. doi: 10.2337/diab.37.12.1595. [DOI] [PubMed] [Google Scholar]
  32. Reymer P. W., Groenemeyer B. E., Gagné E., Miao L., Appelman E. E., Seidel J. C., Kromhout D., Bijvoet S. M., van de Oever K., Bruin T. A frequently occurring mutation in the lipoprotein lipase gene (Asn291Ser) contributes to the expression of familial combined hyperlipidemia. Hum Mol Genet. 1995 Sep;4(9):1543–1549. doi: 10.1093/hmg/4.9.1543. [DOI] [PubMed] [Google Scholar]
  33. Reynisdottir S., Eriksson M., Angelin B., Arner P. Impaired activation of adipocyte lipolysis in familial combined hyperlipidemia. J Clin Invest. 1995 May;95(5):2161–2169. doi: 10.1172/JCI117905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Risch N., Giuffra L. Model misspecification and multipoint linkage analysis. Hum Hered. 1992;42(1):77–92. doi: 10.1159/000154047. [DOI] [PubMed] [Google Scholar]
  35. Sawcer S., Jones H. B., Feakes R., Gray J., Smaldon N., Chataway J., Robertson N., Clayton D., Goodfellow P. N., Compston A. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nat Genet. 1996 Aug;13(4):464–468. doi: 10.1038/ng0896-464. [DOI] [PubMed] [Google Scholar]
  36. Schäffer A. A., Gupta S. K., Shriram K., Cottingham R. W., Jr Avoiding recomputation in linkage analysis. Hum Hered. 1994 Jul-Aug;44(4):225–237. doi: 10.1159/000154222. [DOI] [PubMed] [Google Scholar]
  37. Sheffield V. C., Weber J. L., Buetow K. H., Murray J. C., Even D. A., Wiles K., Gastier J. M., Pulido J. C., Yandava C., Sunden S. L. A collection of tri- and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet. 1995 Oct;4(10):1837–1844. doi: 10.1093/hmg/4.10.1837. [DOI] [PubMed] [Google Scholar]
  38. St George-Hyslop P. H., Tanzi R. E., Polinsky R. J., Haines J. L., Nee L., Watkins P. C., Myers R. H., Feldman R. G., Pollen D., Drachman D. The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science. 1987 Feb 20;235(4791):885–890. doi: 10.1126/science.2880399. [DOI] [PubMed] [Google Scholar]
  39. Terwilliger J. D., Ott J. A novel polylocus method for linkage analysis using the lod-score or affected sib-pair method. Genet Epidemiol. 1993;10(6):477–482. doi: 10.1002/gepi.1370100625. [DOI] [PubMed] [Google Scholar]
  40. Trembath R. C., Clough R. L., Rosbotham J. L., Jones A. B., Camp R. D., Frodsham A., Browne J., Barber R., Terwilliger J., Lathrop G. M. Identification of a major susceptibility locus on chromosome 6p and evidence for further disease loci revealed by a two stage genome-wide search in psoriasis. Hum Mol Genet. 1997 May;6(5):813–820. doi: 10.1093/hmg/6.5.813. [DOI] [PubMed] [Google Scholar]
  41. Vakkilainen J., Porkka K. V., Nuotio I., Pajukanta P., Suurinkeroinen L., Ylitalo K., Viikari J. S., Ehnholm C., Taskinen M. R. Glucose intolerance in familial combined hyperlipidaemia. EUFAM study group. Eur J Clin Invest. 1998 Jan;28(1):24–32. doi: 10.1046/j.1365-2362.1998.00243.x. [DOI] [PubMed] [Google Scholar]
  42. Vartiainen E., Puska P., Jousilahti P., Korhonen H. J., Tuomilehto J., Nissinen A. Twenty-year trends in coronary risk factors in north Karelia and in other areas of Finland. Int J Epidemiol. 1994 Jun;23(3):495–504. doi: 10.1093/ije/23.3.495. [DOI] [PubMed] [Google Scholar]
  43. Wijsman E. M., Brunzell J. D., Jarvik G. P., Austin M. A., Motulsky A. G., Deeb S. S. Evidence against linkage of familial combined hyperlipidemia to the apolipoprotein AI-CIII-AIV gene complex. Arterioscler Thromb Vasc Biol. 1998 Feb;18(2):215–226. doi: 10.1161/01.atv.18.2.215. [DOI] [PubMed] [Google Scholar]
  44. Wojciechowski A. P., Farrall M., Cullen P., Wilson T. M., Bayliss J. D., Farren B., Griffin B. A., Caslake M. J., Packard C. J., Shepherd J. Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23-q24. Nature. 1991 Jan 10;349(6305):161–164. doi: 10.1038/349161a0. [DOI] [PubMed] [Google Scholar]
  45. Yang W. S., Nevin D. N., Peng R., Brunzell J. D., Deeb S. S. A mutation in the promoter of the lipoprotein lipase (LPL) gene in a patient with familial combined hyperlipidemia and low LPL activity. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4462–4466. doi: 10.1073/pnas.92.10.4462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. de Graaf J., Stalenhoef A. F. Defects of lipoprotein metabolism in familial combined hyperlipidaemia. Curr Opin Lipidol. 1998 Jun;9(3):189–196. doi: 10.1097/00041433-199806000-00002. [DOI] [PubMed] [Google Scholar]
  47. de Gruijter M., Hoogerbrugge N., van Rijn M. A., Koster J. F., Sluiter W., Jongkind J. F. Patients with combined hypercholesterolemia-hypertriglyceridemia show an increased monocyte-endothelial cell adhesion in vitro: triglyceride level as a major determinant. Metabolism. 1991 Nov;40(11):1119–1121. doi: 10.1016/0026-0495(91)90203-9. [DOI] [PubMed] [Google Scholar]
  48. de la Chapelle A. Disease gene mapping in isolated human populations: the example of Finland. J Med Genet. 1993 Oct;30(10):857–865. doi: 10.1136/jmg.30.10.857. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES