Abstract
Congenital insensitivity to pain with anhidrosis (CIPA) is characterized by recurrent episodes of unexplained fever, anhidrosis (inability to sweat), absence of reaction to noxious stimuli, self-mutilating behavior, and mental retardation. Human TRKA encodes a high-affinity tyrosine kinase receptor for nerve growth factor (NGF), a member of the neurotrophin family that induces neurite outgrowth and promotes survival of embryonic sensory and sympathetic neurons. We have recently demonstrated that TRKA is responsible for CIPA by identifying three mutations in a region encoding the intracellular tyrosine kinase domain of TRKA in one Ecuadorian and three Japanese families. We have developed a comprehensive strategy to screen for TRKA mutations, on the basis of the gene's structure and organization. Here we report 11 novel mutations, in seven affected families. These are six missense mutations, two frameshift mutations, one nonsense mutation, and two splice-site mutations. Mendelian inheritance of the mutations is confirmed in six families for which parent samples are available. Two mutations are linked, on the same chromosome, to Arg85Ser and to His598Tyr;Gly607Val, hence, they probably represent double and triple mutations. The mutations are distributed in an extracellular domain, involved in NGF binding, as well as the intracellular signal-transduction domain. These data suggest that TRKA defects cause CIPA in various ethnic groups.
Full Text
The Full Text of this article is available as a PDF (584.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ainsworth P. J., Coulter-Mackie M. B. A double mutation in exon 6 of the beta-hexosaminidase alpha subunit in a patient with the B1 variant of Tay-Sachs disease. Am J Hum Genet. 1992 Oct;51(4):802–809. [PMC free article] [PubMed] [Google Scholar]
- Antonarakis S. E. Recommendations for a nomenclature system for human gene mutations. Nomenclature Working Group. Hum Mutat. 1998;11(1):1–3. doi: 10.1002/(SICI)1098-1004(1998)11:1<1::AID-HUMU1>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Barbacid M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann N Y Acad Sci. 1995 Sep 7;766:442–458. doi: 10.1111/j.1749-6632.1995.tb26693.x. [DOI] [PubMed] [Google Scholar]
- Barker P. A., Lomen-Hoerth C., Gensch E. M., Meakin S. O., Glass D. J., Shooter E. M. Tissue-specific alternative splicing generates two isoforms of the trkA receptor. J Biol Chem. 1993 Jul 15;268(20):15150–15157. [PubMed] [Google Scholar]
- Bothwell M. Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci. 1995;18:223–253. doi: 10.1146/annurev.ne.18.030195.001255. [DOI] [PubMed] [Google Scholar]
- Dikic I., Batzer A. G., Blaikie P., Obermeier A., Ullrich A., Schlessinger J., Margolis B. Shc binding to nerve growth factor receptor is mediated by the phosphotyrosine interaction domain. J Biol Chem. 1995 Jun 23;270(25):15125–15129. doi: 10.1074/jbc.270.25.15125. [DOI] [PubMed] [Google Scholar]
- Greco A., Villa R., Pierotti M. A. Genomic organization of the human NTRK1 gene. Oncogene. 1996 Dec 5;13(11):2463–2466. [PubMed] [Google Scholar]
- Hong C. M., Ohashi T., Yu X. J., Weiler S., Barranger J. A. Sequence of two alleles responsible for Gaucher disease. DNA Cell Biol. 1990 May;9(4):233–241. doi: 10.1089/dna.1990.9.233. [DOI] [PubMed] [Google Scholar]
- Indo Y., Mardy S., Tsuruta M., Karim M. A., Matsuda I. Structure and organization of the human TRKA gene encoding a high affinity receptor for nerve growth factor. Jpn J Hum Genet. 1997 Jun;42(2):343–351. doi: 10.1007/BF02766957. [DOI] [PubMed] [Google Scholar]
- Indo Y., Tsuruta M., Hayashida Y., Karim M. A., Ohta K., Kawano T., Mitsubuchi H., Tonoki H., Awaya Y., Matsuda I. Mutations in the TRKA/NGF receptor gene in patients with congenital insensitivity to pain with anhidrosis. Nat Genet. 1996 Aug;13(4):485–488. doi: 10.1038/ng0896-485. [DOI] [PubMed] [Google Scholar]
- Ismail E. A., Al-Shammari N., Anim J. T., Moosa A. Congenital insensitivity to pain with anhidrosis: lack of eccrine sweat gland innervation confirmed. J Child Neurol. 1998 May;13(5):243–246. doi: 10.1177/088307389801300511. [DOI] [PubMed] [Google Scholar]
- Jensen H. K., Jensen T. G., Faergeman O., Jensen L. G., Andresen B. S., Corydon M. J., Andreasen P. H., Hansen P. S., Heath F., Bolund L. Two mutations in the same low-density lipoprotein receptor allele act in synergy to reduce receptor function in heterozygous familial hypercholesterolemia. Hum Mutat. 1997;9(5):437–444. doi: 10.1002/(SICI)1098-1004(1997)9:5<437::AID-HUMU10>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
- Kaplan D. R., Hempstead B. L., Martin-Zanca D., Chao M. V., Parada L. F. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991 Apr 26;252(5005):554–558. doi: 10.1126/science.1850549. [DOI] [PubMed] [Google Scholar]
- Klein R., Jing S. Q., Nanduri V., O'Rourke E., Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991 Apr 5;65(1):189–197. doi: 10.1016/0092-8674(91)90419-y. [DOI] [PubMed] [Google Scholar]
- Langer J., Goebel H. H., Veit S. Eccrine sweat glands are not innervated in hereditary sensory neuropathy type IV. An electron-microscopic study. Acta Neuropathol. 1981;54(3):199–202. doi: 10.1007/BF00687742. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R. The nerve growth factor: thirty-five years later. EMBO J. 1987 May;6(5):1145–1154. doi: 10.1002/j.1460-2075.1987.tb02347.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loeb D. M., Stephens R. M., Copeland T., Kaplan D. R., Greene L. A. A Trk nerve growth factor (NGF) receptor point mutation affecting interaction with phospholipase C-gamma 1 abolishes NGF-promoted peripherin induction but not neurite outgrowth. J Biol Chem. 1994 Mar 25;269(12):8901–8910. [PubMed] [Google Scholar]
- Marchuk D., Drumm M., Saulino A., Collins F. S. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Res. 1991 Mar 11;19(5):1154–1154. doi: 10.1093/nar/19.5.1154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin-Zanca D., Barbacid M., Parada L. F. Expression of the trk proto-oncogene is restricted to the sensory cranial and spinal ganglia of neural crest origin in mouse development. Genes Dev. 1990 May;4(5):683–694. doi: 10.1101/gad.4.5.683. [DOI] [PubMed] [Google Scholar]
- Martin-Zanca D., Hughes S. H., Barbacid M. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. 1986 Feb 27-Mar 5Nature. 319(6056):743–748. doi: 10.1038/319743a0. [DOI] [PubMed] [Google Scholar]
- Martin-Zanca D., Oskam R., Mitra G., Copeland T., Barbacid M. Molecular and biochemical characterization of the human trk proto-oncogene. Mol Cell Biol. 1989 Jan;9(1):24–33. doi: 10.1128/mcb.9.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miozzo M., Pierotti M. A., Sozzi G., Radice P., Bongarzone I., Spurr N. K., Della Porta G. Human TRK proto-oncogene maps to chromosome 1q32-q41. Oncogene. 1990 Sep;5(9):1411–1414. [PubMed] [Google Scholar]
- Morris C. M., Hao Q. L., Heisterkamp N., Fitzgerald P. H., Groffen J. Localization of the TRK proto-oncogene to human chromosome bands 1q23-1q24. Oncogene. 1991 Jun;6(6):1093–1095. [PubMed] [Google Scholar]
- Nakagawara A., Liu X. G., Ikegaki N., White P. S., Yamashiro D. J., Nycum L. M., Biegel J. A., Brodeur G. M. Cloning and chromosomal localization of the human TRK-B tyrosine kinase receptor gene (NTRK2). Genomics. 1995 Jan 20;25(2):538–546. doi: 10.1016/0888-7543(95)80055-q. [DOI] [PubMed] [Google Scholar]
- Obermeier A., Bradshaw R. A., Seedorf K., Choidas A., Schlessinger J., Ullrich A. Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC gamma. EMBO J. 1994 Apr 1;13(7):1585–1590. doi: 10.1002/j.1460-2075.1994.tb06421.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obermeier A., Halfter H., Wiesmüller K. H., Jung G., Schlessinger J., Ullrich A. Tyrosine 785 is a major determinant of Trk--substrate interaction. EMBO J. 1993 Mar;12(3):933–941. doi: 10.1002/j.1460-2075.1993.tb05734.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obermeier A., Lammers R., Wiesmüller K. H., Jung G., Schlessinger J., Ullrich A. Identification of Trk binding sites for SHC and phosphatidylinositol 3'-kinase and formation of a multimeric signaling complex. J Biol Chem. 1993 Nov 5;268(31):22963–22966. [PubMed] [Google Scholar]
- Rafel E., Alberca R., Bautista J., Navarrete M., Lazo J. Congenital insensitivity to pain with anhidrosis. Muscle Nerve. 1980 May-Jun;3(3):216–220. doi: 10.1002/mus.880030305. [DOI] [PubMed] [Google Scholar]
- SWANSON A. G., BUCHAN G. C., ALVORD E. C., Jr ANATOMIC CHANGES IN CONGENITAL INSENSITIVITY TO PAIN. ABSENCE OF SMALL PRIMARY SENSORY NEURONS IN GANGLIA, ROOTS, AND LISSAUER'S TRACT. Arch Neurol. 1965 Jan;12:12–18. doi: 10.1001/archneur.1965.00460250016002. [DOI] [PubMed] [Google Scholar]
- SWANSON A. G. Congenital insensitivity to pain with anhydrosis. A unique syndrome in two male siblings. Arch Neurol. 1963 Mar;8:299–306. doi: 10.1001/archneur.1963.00460030083008. [DOI] [PubMed] [Google Scholar]
- Schneider R., Schweiger M. A novel modular mosaic of cell adhesion motifs in the extracellular domains of the neurogenic trk and trkB tyrosine kinase receptors. Oncogene. 1991 Oct;6(10):1807–1811. [PubMed] [Google Scholar]
- Smeyne R. J., Klein R., Schnapp A., Long L. K., Bryant S., Lewin A., Lira S. A., Barbacid M. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 1994 Mar 17;368(6468):246–249. doi: 10.1038/368246a0. [DOI] [PubMed] [Google Scholar]
- Snider W. D. Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell. 1994 Jun 3;77(5):627–638. doi: 10.1016/0092-8674(94)90048-5. [DOI] [PubMed] [Google Scholar]
- Soltoff S. P., Rabin S. L., Cantley L. C., Kaplan D. R. Nerve growth factor promotes the activation of phosphatidylinositol 3-kinase and its association with the trk tyrosine kinase. J Biol Chem. 1992 Aug 25;267(24):17472–17477. [PubMed] [Google Scholar]
- Stephens R. M., Loeb D. M., Copeland T. D., Pawson T., Greene L. A., Kaplan D. R. Trk receptors use redundant signal transduction pathways involving SHC and PLC-gamma 1 to mediate NGF responses. Neuron. 1994 Mar;12(3):691–705. doi: 10.1016/0896-6273(94)90223-2. [DOI] [PubMed] [Google Scholar]
- Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
- Tsuruta M., Mitsubuchi H., Mardy S., Miura Y., Hayashida Y., Kinugasa A., Ishitsu T., Matsuda I., Indo Y. Molecular basis of intermittent maple syrup urine disease: novel mutations in the E2 gene of the branched-chain alpha-keto acid dehydrogenase complex. J Hum Genet. 1998;43(2):91–100. doi: 10.1007/s100380050047. [DOI] [PubMed] [Google Scholar]