Abstract
Common disorders with genetic susceptibilities involve the action of multiple genes interacting with each other and with environmental factors, making it difficult to localize the specific genetic loci responsible. An important route to the disentangling of this complex inheritance is through the study of normal physiological variation in quantitative risk factors that may underlie liability to disease. We present an analysis of HDL-cholesterol (HDL-C), which is inversely correlated with risk of heart disease. A variety of HDL subphenotypes were analyzed, including HDL particle-size classes and the concentrations and proportions of esterified and unesterified HDL-C. Results of a complete genomic screen in large, randomly ascertained pedigrees implicated two loci, one on chromosome 8 and the other on chromosome 15, that influence a component of HDL-C-namely, unesterified HDL2a-C. Multivariate analyses of multiple HDL phenotypes and simultaneous multilocus analysis of the quantitative-trait loci identified permit further characterization of the genetic effects on HDL-C. These analyses suggest that the action of the chromosome 8 locus is specific to unesterified cholesterol levels, whereas the chromosome 15 locus appears to influence both HDL-C concentration and distribution of cholesterol among HDL particle sizes.
Full Text
The Full Text of this article is available as a PDF (243.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almasy L., Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998 May;62(5):1198–1211. doi: 10.1086/301844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Almasy L., Dyer T. D., Blangero J. Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages. Genet Epidemiol. 1997;14(6):953–958. doi: 10.1002/(SICI)1098-2272(1997)14:6<953::AID-GEPI65>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- Amos C. I., Elston R. C., Srinivasan S. R., Wilson A. F., Cresanta J. L., Ward L. J., Berenson G. S. Linkage and segregation analyses of apolipoproteins A1 and B, and lipoprotein cholesterol levels in a large pedigree with excess coronary heart disease: the Bogalusa Heart Study. Genet Epidemiol. 1987;4(2):115–128. doi: 10.1002/gepi.1370040206. [DOI] [PubMed] [Google Scholar]
- Austin M. A., King M. C., Bawol R. D., Hulley S. B., Friedman G. D. Risk factors for coronary heart disease in adult female twins. Genetic heritability and shared environmental influences. Am J Epidemiol. 1987 Feb;125(2):308–318. doi: 10.1093/oxfordjournals.aje.a114531. [DOI] [PubMed] [Google Scholar]
- Barbagallo C. M., Averna M. R., Fradà G., Noto D., Cavera G., Notarbartolo A. Lipoprotein profile and high-density lipoproteins: subfractions distribution in centenarians. Gerontology. 1998;44(2):106–110. doi: 10.1159/000021992. [DOI] [PubMed] [Google Scholar]
- Blanche P. J., Gong E. L., Forte T. M., Nichols A. V. Characterization of human high-density lipoproteins by gradient gel electrophoresis. Biochim Biophys Acta. 1981 Sep 24;665(3):408–419. doi: 10.1016/0005-2760(81)90253-8. [DOI] [PubMed] [Google Scholar]
- Blangero J., Almasy L. Multipoint oligogenic linkage analysis of quantitative traits. Genet Epidemiol. 1997;14(6):959–964. doi: 10.1002/(SICI)1098-2272(1997)14:6<959::AID-GEPI66>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- Bruce C., Sharp D. S., Tall A. R. Relationship of HDL and coronary heart disease to a common amino acid polymorphism in the cholesteryl ester transfer protein in men with and without hypertriglyceridemia. J Lipid Res. 1998 May;39(5):1071–1078. [PubMed] [Google Scholar]
- Bucher K. D., Friedlander Y., Kaplan E. B., Namboodiri K. K., Kark J. D., Eisenberg S., Stein Y., Rifkind B. M. Biological and cultural sources of familial resemblance in plasma lipids: a comparison between North America and Israel--the Lipid Research Clinics Program. Genet Epidemiol. 1988;5(1):17–33. doi: 10.1002/gepi.1370050103. [DOI] [PubMed] [Google Scholar]
- Cohen J. C., Wang Z., Grundy S. M., Stoesz M. R., Guerra R. Variation at the hepatic lipase and apolipoprotein AI/CIII/AIV loci is a major cause of genetically determined variation in plasma HDL cholesterol levels. J Clin Invest. 1994 Dec;94(6):2377–2384. doi: 10.1172/JCI117603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devlin C. M., Prenger V. L., Miller M. Linkage of the apo CIII microsatellite with isolated low high-density lipoprotein cholesterol. Hum Genet. 1998 Mar;102(3):273–281. doi: 10.1007/s004390050691. [DOI] [PubMed] [Google Scholar]
- Duggirala R., Williams J. T., Williams-Blangero S., Blangero J. A variance component approach to dichotomous trait linkage analysis using a threshold model. Genet Epidemiol. 1997;14(6):987–992. doi: 10.1002/(SICI)1098-2272(1997)14:6<987::AID-GEPI71>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Dupuy-Gorce A. M., Desmarais E., Vigneron S., Buresi C., Nicaud V., Evans A., Luc G., Arveiler D., Marqués-Vidal P., Cambien F. DNA polymorphisms in linkage disequilibrium at the 3' end of the human APO AII gene: relationships with lipids, apolipoproteins and coronary heart disease. Clin Genet. 1996 Oct;50(4):191–198. doi: 10.1111/j.1399-0004.1996.tb02624.x. [DOI] [PubMed] [Google Scholar]
- Friedlander Y., Kark J. D., Stein Y. Complex segregation analysis of low levels of plasma high-density lipoprotein cholesterol in a sample of nuclear families in Jerusalem. Genet Epidemiol. 1986;3(5):285–297. doi: 10.1002/gepi.1370030502. [DOI] [PubMed] [Google Scholar]
- Gerdes C., Gerdes L. U., Hansen P. S., Faergeman O. Polymorphisms in the lipoprotein lipase gene and their associations with plasma lipid concentrations in 40-year-old Danish men. Circulation. 1995 Oct 1;92(7):1765–1769. doi: 10.1161/01.cir.92.7.1765. [DOI] [PubMed] [Google Scholar]
- Gordon D. J., Probstfield J. L., Garrison R. J., Neaton J. D., Castelli W. P., Knoke J. D., Jacobs D. R., Jr, Bangdiwala S., Tyroler H. A. High-density lipoprotein cholesterol and cardiovascular disease. Four prospective American studies. Circulation. 1989 Jan;79(1):8–15. doi: 10.1161/01.cir.79.1.8. [DOI] [PubMed] [Google Scholar]
- Gordon T., Castelli W. P., Hjortland M. C., Kannel W. B., Dawber T. R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med. 1977 May;62(5):707–714. doi: 10.1016/0002-9343(77)90874-9. [DOI] [PubMed] [Google Scholar]
- Guerra R., Wang J., Grundy S. M., Cohen J. C. A hepatic lipase (LIPC) allele associated with high plasma concentrations of high density lipoprotein cholesterol. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4532–4537. doi: 10.1073/pnas.94.9.4532. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamsten A., Iselius L., Dahlén G., de Faire U. Genetic and cultural inheritance of serum lipids, low and high density lipoprotein cholesterol and serum apolipoproteins A-I, A-II and B. Atherosclerosis. 1986 Jun;60(3):199–208. doi: 10.1016/0021-9150(86)90166-8. [DOI] [PubMed] [Google Scholar]
- Hasstedt S. J., Ash K. O., Williams R. R. A re-examination of major locus hypotheses for high density lipoprotein cholesterol level using 2,170 persons screened in 55 Utah pedigrees. Am J Med Genet. 1986 May;24(1):57–67. doi: 10.1002/ajmg.1320240108. [DOI] [PubMed] [Google Scholar]
- Heller D. A., de Faire U., Pedersen N. L., Dahlén G., McClearn G. E. Genetic and environmental influences on serum lipid levels in twins. N Engl J Med. 1993 Apr 22;328(16):1150–1156. doi: 10.1056/NEJM199304223281603. [DOI] [PubMed] [Google Scholar]
- Hunt S. C., Hasstedt S. J., Kuida H., Stults B. M., Hopkins P. N., Williams R. R. Genetic heritability and common environmental components of resting and stressed blood pressures, lipids, and body mass index in Utah pedigrees and twins. Am J Epidemiol. 1989 Mar;129(3):625–638. doi: 10.1093/oxfordjournals.aje.a115175. [DOI] [PubMed] [Google Scholar]
- Jemaa R., Fumeron F., Poirier O., Lecerf L., Evans A., Arveiler D., Luc G., Cambou J. P., Bard J. M., Fruchart J. C. Lipoprotein lipase gene polymorphisms: associations with myocardial infarction and lipoprotein levels, the ECTIM study. Etude Cas Témoin sur l'Infarctus du Myocarde. J Lipid Res. 1995 Oct;36(10):2141–2146. [PubMed] [Google Scholar]
- Jiang D., Wen D., Qi S. [The significance of high-density lipoprotein subfractions and triglycerides in predicting coronary artery disease]. Zhonghua Nei Ke Za Zhi. 1995 May;34(5):298–301. [PubMed] [Google Scholar]
- Kamboh M. I., Aston C. E., Nestlerode C. M., McAllister A. E., Hamman R. F. Haplotype analysis of two APOA1/MspI polymorphisms in relation to plasma levels of apo A-I and HDL-cholesterol. Atherosclerosis. 1996 Dec 20;127(2):255–262. doi: 10.1016/s0021-9150(96)05966-7. [DOI] [PubMed] [Google Scholar]
- Kastelein J. J., Groenemeyer B. E., Hallman D. M., Henderson H., Reymer P. W., Gagné S. E., Jansen H., Seidell J. C., Kromhout D., Jukema J. W. The Asn9 variant of lipoprotein lipase is associated with the -93G promoter mutation and an increased risk of coronary artery disease. The Regress Study Group. Clin Genet. 1998 Jan;53(1):27–33. doi: 10.1034/j.1399-0004.1998.531530106.x. [DOI] [PubMed] [Google Scholar]
- Knoblauch H., Busjahn A., Münter S., Nagy Z., Faulhaber H. D., Schuster H., Luft F. C. Heritability analysis of lipids and three gene loci in twins link the macrophage scavenger receptor to HDL cholesterol concentrations. Arterioscler Thromb Vasc Biol. 1997 Oct;17(10):2054–2060. doi: 10.1161/01.atv.17.10.2054. [DOI] [PubMed] [Google Scholar]
- Lange K., Boehnke M. Extensions to pedigree analysis. IV. Covariance components models for multivariate traits. Am J Med Genet. 1983 Mar;14(3):513–524. doi: 10.1002/ajmg.1320140315. [DOI] [PubMed] [Google Scholar]
- Lefevre M. Localization of lipoprotein unesterified cholesterol in nondenaturing gradient gels with filipin. J Lipid Res. 1988 Jun;29(6):815–818. [PubMed] [Google Scholar]
- Mahaney M. C., Blangero J., Rainwater D. L., Comuzzie A. G., VandeBerg J. L., Stern M. P., MacCluer J. W., Hixson J. E. A major locus influencing plasma high-density lipoprotein cholesterol levels in the San Antonio Family Heart Study. Segregation and linkage analyses. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1730–1739. doi: 10.1161/01.atv.15.10.1730. [DOI] [PubMed] [Google Scholar]
- Manninen V., Elo M. O., Frick M. H., Haapa K., Heinonen O. P., Heinsalmi P., Helo P., Huttunen J. K., Kaitaniemi P., Koskinen P. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA. 1988 Aug 5;260(5):641–651. [PubMed] [Google Scholar]
- Mattu R. K., Needham E. W., Galton D. J., Frangos E., Clark A. J., Caulfield M. A DNA variant at the angiotensin-converting enzyme gene locus associates with coronary artery disease in the Caerphilly Heart Study. Circulation. 1995 Jan 15;91(2):270–274. doi: 10.1161/01.cir.91.2.270. [DOI] [PubMed] [Google Scholar]
- McPherson R., Grundy S. M., Guerra R., Cohen J. C. Allelic variation in the gene encoding the cholesteryl ester transfer protein is associated with variation in the plasma concentrations of cholesteryl ester transfer protein. J Lipid Res. 1996 Aug;37(8):1743–1748. [PubMed] [Google Scholar]
- Miller G. J., Miller N. E. Plasma-high-density-lipoprotein concentration and development of ischaemic heart-disease. Lancet. 1975 Jan 4;1(7897):16–19. doi: 10.1016/s0140-6736(75)92376-4. [DOI] [PubMed] [Google Scholar]
- Minnich A., DeLangavant G., Lavigne J., Roederer G., Lussier-Cacan S., Davignon J. G-->A substitution at position -75 of the apolipoprotein A-I gene promoter. Evidence against a direct effect on HDL cholesterol levels. Arterioscler Thromb Vasc Biol. 1995 Oct;15(10):1740–1745. doi: 10.1161/01.atv.15.10.1740. [DOI] [PubMed] [Google Scholar]
- Mitchell B. D., Kammerer C. M., Blangero J., Mahaney M. C., Rainwater D. L., Dyke B., Hixson J. E., Henkel R. D., Sharp R. M., Comuzzie A. G. Genetic and environmental contributions to cardiovascular risk factors in Mexican Americans. The San Antonio Family Heart Study. Circulation. 1996 Nov 1;94(9):2159–2170. doi: 10.1161/01.cir.94.9.2159. [DOI] [PubMed] [Google Scholar]
- Mowat B. F., Skinner E. R., Wilson H. M., Leng G. C., Fowkes F. G., Horrobin D. Alterations in plasma lipids, lipoproteins and high density lipoprotein subfractions in peripheral arterial disease. Atherosclerosis. 1997 Jun;131(2):161–166. doi: 10.1016/s0021-9150(97)06097-8. [DOI] [PubMed] [Google Scholar]
- Namboodiri K. K., Kaplan E. B., Heuch I., Elston R. C., Green P. P., Rao D. C., Laskarzewski P., Glueck C. J., Rifkind B. M. The Collaborative Lipid Research Clinics Family Study: biological and cultural determinants of familial resemblance for plasma lipids and lipoproteins. Genet Epidemiol. 1985;2(3):227–254. doi: 10.1002/gepi.1370020302. [DOI] [PubMed] [Google Scholar]
- O'Connell D. L., Heller R. F., Roberts D. C., Allen J. R., Knapp J. C., Steele P. L., Silove D. Twin study of genetic and environmental effects on lipid levels. Genet Epidemiol. 1988;5(5):323–341. doi: 10.1002/gepi.1370050504. [DOI] [PubMed] [Google Scholar]
- Rainwater D. L., Andres D. W., Ford A. L., Lowe F., Blanche P. J., Krauss R. M. Production of polyacrylamide gradient gels for the electrophoretic resolution of lipoproteins. J Lipid Res. 1992 Dec;33(12):1876–1881. [PubMed] [Google Scholar]
- Rainwater D. L., Blangero J., Moore P. H., Jr, Shelledy W. R., Dyer T. D. Genetic control of apolipoprotein A-I distribution among HDL subclasses. Atherosclerosis. 1995 Dec;118(2):307–317. doi: 10.1016/0021-9150(95)05623-8. [DOI] [PubMed] [Google Scholar]
- Rao D. C., Laskarzewski P. M., Morrison J. A., Khoury P., Kelly K., Wette R., Russell J., Glueck C. J. The Cincinnati Lipid Research Clinic family study: cultural and biological determinants of lipids and lipoprotein concentrations. Am J Hum Genet. 1982 Nov;34(6):888–903. [PMC free article] [PubMed] [Google Scholar]
- Rhoads G. G., Gulbrandsen C. L., Kagan A. Serum lipoproteins and coronary heart disease in a population study of Hawaii Japanese men. N Engl J Med. 1976 Feb 5;294(6):293–298. doi: 10.1056/NEJM197602052940601. [DOI] [PubMed] [Google Scholar]
- Rice T., Vogler G. P., Perry T. S., Laskarzewski P. M., Rao D. C. Familial aggregation of lipids and lipoproteins in families ascertained through random and nonrandom probands in the Iowa Lipid Research Clinics family study. Hum Hered. 1991;41(2):107–121. doi: 10.1159/000153987. [DOI] [PubMed] [Google Scholar]
- Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
- Silverman D. I., Ginsburg G. S., Pasternak R. C. High-density lipoprotein subfractions. Am J Med. 1993 Jun;94(6):636–645. doi: 10.1016/0002-9343(93)90217-d. [DOI] [PubMed] [Google Scholar]
- Sweetnam P. M., Bolton C. H., Yarnell J. W., Bainton D., Baker I. A., Elwood P. C., Miller N. E. Associations of the HDL2 and HDL3 cholesterol subfractions with the development of ischemic heart disease in British men. The Caerphilly and Speedwell Collaborative Heart Disease Studies. Circulation. 1994 Aug;90(2):769–774. doi: 10.1161/01.cir.90.2.769. [DOI] [PubMed] [Google Scholar]
- Turner P. R., Talmud P. J., Visvikis S., Ehnholm C., Tiret L. DNA polymorphisms of the apoprotein B gene are associated with altered plasma lipoprotein concentrations but not with perceived risk of cardiovascular disease: European Atherosclerosis Research Study. Atherosclerosis. 1995 Aug;116(2):221–234. doi: 10.1016/0021-9150(94)05550-3. [DOI] [PubMed] [Google Scholar]
- Verdery R. B., Benham D. F., Baldwin H. L., Goldberg A. P., Nichols A. V. Measurement of normative HDL subfraction cholesterol levels by Gaussian summation analysis of gradient gels. J Lipid Res. 1989 Jul;30(7):1085–1095. [PubMed] [Google Scholar]
- Whitfield J. B., Martin N. G. Plasma lipids in twins. Environmental and genetic influences. Atherosclerosis. 1983 Sep;48(3):265–277. doi: 10.1016/0021-9150(83)90044-8. [DOI] [PubMed] [Google Scholar]
- Wijsman E. M., Amos C. I. Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol. 1997;14(6):719–735. doi: 10.1002/(SICI)1098-2272(1997)14:6<719::AID-GEPI28>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
- Wilson P. W. Relation of high-density lipoprotein subfractions and apolipoprotein E isoforms to coronary disease. Clin Chem. 1995 Jan;41(1):165–169. [PubMed] [Google Scholar]