Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Jun;64(6):1694–1701. doi: 10.1086/302405

An extreme-sib-pair genome scan for genes regulating blood pressure.

X Xu 1, J J Rogus 1, H A Terwedow 1, J Yang 1, Z Wang 1, C Chen 1, T Niu 1, B Wang 1, H Xu 1, S Weiss 1, N J Schork 1, Z Fang 1
PMCID: PMC1377913  PMID: 10330357

Abstract

Hypertension, a risk factor for many cardiovascular, cerebrovascular, and renal diseases, affects one in four Americans, at an annual cost of>$30 billion. Although genetic mutations have been identified in rare forms of hypertension, including Liddle syndrome and glucocorticoid-remediable aldosteronism, the abundance of plausible candidate genes and potential environmental risk factors has complicated the genetic dissection of more prevalent essential hypertension. To search systematically for chromosomal regions containing genes that regulate blood pressure, we scanned the entire autosomal genome by using 367 polymorphic markers. Our study population, selected from a blood-pressure screen of >200,000 Chinese adults, comprises rare but highly efficient extreme sib pairs (207 discordant, 258 high concordant, and 99 low concordant) and all but a single parent of these sibs. By virtue of the sampling design, the number of sib pairs, and the availability of genotyped parents, this study represents one of the most powerful of its kind. Although no regions achieved a 5% genomewide significance level, maximum LOD-score values were >2.0 (unadjusted P<.001) for regions containing five markers (D3S2387, D11S2019, D15S657, D16S3396, and D17S1303), in our primary analysis. Other promising regions identified through secondary analyses include loci near D4S3248, D7S2195, D10S1423, D20S470, D20S482, D21S2052, PAH, and AGT.

Full Text

The Full Text of this article is available as a PDF (240.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackwelder W. C., Elston R. C. A comparison of sib-pair linkage tests for disease susceptibility loci. Genet Epidemiol. 1985;2(1):85–97. doi: 10.1002/gepi.1370020109. [DOI] [PubMed] [Google Scholar]
  2. Buffone G. J., Darlington G. J. Isolation of DNA from biological specimens without extraction with phenol. Clin Chem. 1985 Jan;31(1):164–165. [PubMed] [Google Scholar]
  3. Cardon L. R., Fulker D. W. The power of interval mapping of quantitative trait loci, using selected sib pairs. Am J Hum Genet. 1994 Oct;55(4):825–833. [PMC free article] [PubMed] [Google Scholar]
  4. Carey G., Williamson J. Linkage analysis of quantitative traits: increased power by using selected samples. Am J Hum Genet. 1991 Oct;49(4):786–796. [PMC free article] [PubMed] [Google Scholar]
  5. Frossard P. M., Lestringant G. G. Association between a dimorphic site on chromosome 12 and clinical diagnosis of hypertension in three independent populations. Clin Genet. 1995 Dec;48(6):284–287. doi: 10.1111/j.1399-0004.1995.tb04110.x. [DOI] [PubMed] [Google Scholar]
  6. Holmans P. Asymptotic properties of affected-sib-pair linkage analysis. Am J Hum Genet. 1993 Feb;52(2):362–374. [PMC free article] [PubMed] [Google Scholar]
  7. Jeunemaitre X., Soubrier F., Kotelevtsev Y. V., Lifton R. P., Williams C. S., Charru A., Hunt S. C., Hopkins P. N., Williams R. R., Lalouel J. M. Molecular basis of human hypertension: role of angiotensinogen. Cell. 1992 Oct 2;71(1):169–180. doi: 10.1016/0092-8674(92)90275-h. [DOI] [PubMed] [Google Scholar]
  8. Julier C., Delépine M., Keavney B., Terwilliger J., Davis S., Weeks D. E., Bui T., Jeunemaître X., Velho G., Froguel P. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet. 1997 Nov;6(12):2077–2085. doi: 10.1093/hmg/6.12.2077. [DOI] [PubMed] [Google Scholar]
  9. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  10. Kruglyak L., Lander E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet. 1995 Aug;57(2):439–454. [PMC free article] [PubMed] [Google Scholar]
  11. Lander E., Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995 Nov;11(3):241–247. doi: 10.1038/ng1195-241. [DOI] [PubMed] [Google Scholar]
  12. Lunetta K. L., Rogus J. J. Strategy for mapping minor histocompatibility genes involved in graft-versus-host disease: a novel application of discordant sib pair methodology. Genet Epidemiol. 1998;15(6):595–607. doi: 10.1002/(SICI)1098-2272(1998)15:6<595::AID-GEPI4>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  13. Risch N. Linkage strategies for genetically complex traits. II. The power of affected relative pairs. Am J Hum Genet. 1990 Feb;46(2):229–241. [PMC free article] [PubMed] [Google Scholar]
  14. Risch N., Zhang H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science. 1995 Jun 16;268(5217):1584–1589. doi: 10.1126/science.7777857. [DOI] [PubMed] [Google Scholar]
  15. Rogus J. J., Harrington D. P., Jorgenson E., Xu X. Effectiveness of extreme discordant sib pairs to detect oligogenic disease loci. Genet Epidemiol. 1997;14(6):879–884. doi: 10.1002/(SICI)1098-2272(1997)14:6<879::AID-GEPI53>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  16. Schaid D. J. General score tests for associations of genetic markers with disease using cases and their parents. Genet Epidemiol. 1996;13(5):423–449. doi: 10.1002/(SICI)1098-2272(1996)13:5<423::AID-GEPI1>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  17. Spielman R. S., McGinnis R. E., Ewens W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993 Mar;52(3):506–516. [PMC free article] [PubMed] [Google Scholar]
  18. Suarez B. K., Hodge S. E. A simple method to detect linkage for rare recessive diseases: an application to juvenile diabetes. Clin Genet. 1979 Feb;15(2):126–136. doi: 10.1111/j.1399-0004.1979.tb01751.x. [DOI] [PubMed] [Google Scholar]
  19. Watt G. C., Harrap S. B., Foy C. J., Holton D. W., Edwards H. V., Davidson H. R., Connor J. M., Lever A. F., Fraser R. Abnormalities of glucocorticoid metabolism and the renin-angiotensin system: a four-corners approach to the identification of genetic determinants of blood pressure. J Hypertens. 1992 May;10(5):473–482. doi: 10.1097/00004872-199205000-00011. [DOI] [PubMed] [Google Scholar]
  20. Xu X., Niu T., Christiani D. C., Weiss S. T., Zhou Y., Chen C., Yang J., Fang Z., Jiang Z., Liang W. Environmental and occupational determinants of blood pressure in rural communities in China. Ann Epidemiol. 1997 Feb;7(2):95–106. doi: 10.1016/s1047-2797(96)00126-3. [DOI] [PubMed] [Google Scholar]
  21. Yuan B., Vaske D., Weber J. L., Beck J., Sheffield V. C. Improved set of short-tandem-repeat polymorphisms for screening the human genome. Am J Hum Genet. 1997 Feb;60(2):459–460. [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES