Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Jun;64(6):1702–1708. doi: 10.1086/302410

A chromosomal duplication map of malformations: regions of suspected haplo- and triplolethality--and tolerance of segmental aneuploidy--in humans.

C Brewer 1, S Holloway 1, P Zawalnyski 1, A Schinzel 1, D FitzPatrick 1
PMCID: PMC1377914  PMID: 10330358

Abstract

The distribution of simple autosomal duplications associated with congenital malformations has been analyzed by means of data contained in the Human Cytogenetics Database. For each of the 47 malformations, the frequency of duplication of a given chromosome band associated with the malformation was compared with the overall frequency of duplication of that band recorded in the database. In total, there were 143 malformation-associated chromosomal regions (MACR); 21 of these contained at least one band with a highly significant (P<.001) association. The average number of bands per MACR was 3.1. Eight bands, representing 2.1% of haploid autosomal length, were not involved in any duplication, and we suggest that these are potentially triplolethal. This compares with 31 bands, representing 11% of haploid autosomal length, that were identified in the previously reported deletion map and that were not involved in any deletion and are potentially haplolethal. In both cases, approximately half of these bands are pericentromeric. The longest duplication involves 4.3% of haploid autosomal length, and the longest deletion involves 2.7%.

Full Text

The Full Text of this article is available as a PDF (249.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BECKER K. L., BURKE E. C., ALBERT A. Double autosomal trisomy (D trisomy plus mongolism). Proc Staff Meet Mayo Clin. 1963 Jun 5;38:242–248. [PubMed] [Google Scholar]
  2. Brewer C., Holloway S., Zawalnyski P., Schinzel A., FitzPatrick D. A chromosomal deletion map of human malformations. Am J Hum Genet. 1998 Oct;63(4):1153–1159. doi: 10.1086/302041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chung C. S., Myrianthopoulos N. C. Racial and prenatal factors in major congenital malformations. Am J Hum Genet. 1968 Jan;20(1):44–60. [PMC free article] [PubMed] [Google Scholar]
  4. Delabar J. M., Theophile D., Rahmani Z., Chettouh Z., Blouin J. L., Prieur M., Noel B., Sinet P. M. Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur J Hum Genet. 1993;1(2):114–124. doi: 10.1159/000472398. [DOI] [PubMed] [Google Scholar]
  5. GAGNON J., KATYK-LONGTIN N., de GROOT J., BARBEAU A. [Double autosomal trisomy with 48 chromosomes (21 and 18)]. Union Med Can. 1961 Nov;90:1220–1226. [PubMed] [Google Scholar]
  6. Hatada I., Ohashi H., Fukushima Y., Kaneko Y., Inoue M., Komoto Y., Okada A., Ohishi S., Nabetani A., Morisaki H. An imprinted gene p57KIP2 is mutated in Beckwith-Wiedemann syndrome. Nat Genet. 1996 Oct;14(2):171–173. doi: 10.1038/ng1096-171. [DOI] [PubMed] [Google Scholar]
  7. Henry I., Bonaiti-Pellié C., Chehensse V., Beldjord C., Schwartz C., Utermann G., Junien C. Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature. 1991 Jun 20;351(6328):665–667. doi: 10.1038/351665a0. [DOI] [PubMed] [Google Scholar]
  8. Hogue C. J., Strauss L. T., Buehler J. W., Smith J. C. Overview of the National Infant Mortality Surveillance (NIMS) project. MMWR CDC Surveill Summ. 1989 Dec;38(3):1–46. [PubMed] [Google Scholar]
  9. Hrubec Z., Robinette C. D. The study of human twins in medical research. N Engl J Med. 1984 Feb 16;310(7):435–441. doi: 10.1056/NEJM198402163100706. [DOI] [PubMed] [Google Scholar]
  10. Jacobs P. A., Browne C., Gregson N., Joyce C., White H. Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet. 1992 Feb;29(2):103–108. doi: 10.1136/jmg.29.2.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Joyce J. A., Lam W. K., Catchpoole D. J., Jenks P., Reik W., Maher E. R., Schofield P. N. Imprinting of IGF2 and H19: lack of reciprocity in sporadic Beckwith-Wiedemann syndrome. Hum Mol Genet. 1997 Sep;6(9):1543–1548. doi: 10.1093/hmg/6.9.1543. [DOI] [PubMed] [Google Scholar]
  12. Kalter H., Warkany J. Congenital malformations (second of two parts). N Engl J Med. 1983 Mar 3;308(9):491–497. doi: 10.1056/NEJM198303033080904. [DOI] [PubMed] [Google Scholar]
  13. Khoury M. J., Beaty T. H., Liang K. Y. Can familial aggregation of disease be explained by familial aggregation of environmental risk factors? Am J Epidemiol. 1988 Mar;127(3):674–683. doi: 10.1093/oxfordjournals.aje.a114842. [DOI] [PubMed] [Google Scholar]
  14. Li Q. Y., Newbury-Ecob R. A., Terrett J. A., Wilson D. I., Curtis A. R., Yi C. H., Gebuhr T., Bullen P. J., Robson S. C., Strachan T. Holt-Oram syndrome is caused by mutations in TBX5, a member of the Brachyury (T) gene family. Nat Genet. 1997 Jan;15(1):21–29. doi: 10.1038/ng0197-21. [DOI] [PubMed] [Google Scholar]
  15. Lindsley D. L., Sandler L., Baker B. S., Carpenter A. T., Denell R. E., Hall J. C., Jacobs P. A., Miklos G. L., Davis B. K., Gethmann R. C. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics. 1972 May;71(1):157–184. doi: 10.1093/genetics/71.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lurie I. W. Autosomal imbalance syndromes: genetic interactions and the origin of congenital malformations in aneuploidy syndromes. Am J Med Genet. 1993 Sep 1;47(3):410–416. doi: 10.1002/ajmg.1320470323. [DOI] [PubMed] [Google Scholar]
  17. Mange A. P., Sandler L. A note on the maternal effect mutants daughterless and abnormal oocyte in Drosophila melanogaster. Genetics. 1973 Jan;73(1):73–86. doi: 10.1093/genetics/73.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Naski M. C., Wang Q., Xu J., Ornitz D. M. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet. 1996 Jun;13(2):233–237. doi: 10.1038/ng0696-233. [DOI] [PubMed] [Google Scholar]
  19. Pollock R. A., Sreenath T., Ngo L., Bieberich C. J. Gain of function mutations for paralogous Hox genes: implications for the evolution of Hox gene function. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4492–4496. doi: 10.1073/pnas.92.10.4492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sandler L., Hecht F. Annotation: genetic effects of aneuploidy. Am J Hum Genet. 1973 May;25(3):332–339. [PMC free article] [PubMed] [Google Scholar]
  21. Schedl A., Ross A., Lee M., Engelkamp D., Rashbass P., van Heyningen V., Hastie N. D. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell. 1996 Jul 12;86(1):71–82. doi: 10.1016/s0092-8674(00)80078-1. [DOI] [PubMed] [Google Scholar]
  22. Tavormina P. L., Rimoin D. L., Cohn D. H., Zhu Y. Z., Shiang R., Wasmuth J. J. Another mutation that results in the substitution of an unpaired cysteine residue in the extracellular domain of FGFR3 in thanatophoric dysplasia type I. Hum Mol Genet. 1995 Nov;4(11):2175–2177. doi: 10.1093/hmg/4.11.2175. [DOI] [PubMed] [Google Scholar]
  23. Vasarhelyi K., Friedman J. M. Analysing rearrangement breakpoint distributions by means of binomial confidence intervals. Ann Hum Genet. 1989 Oct;53(Pt 4):375–380. doi: 10.1111/j.1469-1809.1989.tb01805.x. [DOI] [PubMed] [Google Scholar]
  24. Wilkie A. O. The molecular basis of genetic dominance. J Med Genet. 1994 Feb;31(2):89–98. doi: 10.1136/jmg.31.2.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zachgo J., Korn R., Gossler A. Genetic interactions suggest that Danforth's short tail (Sd) is a gain-of-function mutation. Dev Genet. 1998;23(1):86–96. doi: 10.1002/(SICI)1520-6408(1998)23:1<86::AID-DVG9>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES