Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Aug;65(2):336–344. doi: 10.1086/302512

Redefinition of exon 7 in the COL1A1 gene of type I collagen by an intron 8 splice-donor-site mutation in a form of osteogenesis imperfecta: influence of intron splice order on outcome of splice-site mutation.

U Schwarze 1, B J Starman 1, P H Byers 1
PMCID: PMC1377932  PMID: 10417276

Abstract

Most splice-site mutations lead to a limited array of products, including exon skipping, use of cryptic splice-acceptor or -donor sites, and intron inclusion. At the intron 8 splice-donor site of the COL1A1 gene, we identified a G+1-->A transition that resulted in the production of several splice products from the mutant allele. These included one in which the upstream exon 7 was extended by 96 nt, others in which either intron 8 or introns 7 and 8 were retained, one in which exon 8 was skipped, and one that used a cryptic donor site in exon 8. To determine the mechanism by which exon-7 redefinition might occur, we examined the order of intron removal in the region of the mutation by using intron/exon primer pairs to amplify regions of the precursor nuclear mRNA between exon 5 and exon 10. Removal of introns 5, 6, and 9 was rapid. Removal of intron 8 usually preceded removal of intron 7 in the normal gene, although, in a small proportion of copies, the order was reversed. The proportion of abnormal products suggested that exon 7 redefinition, intron 7 plus intron 8 inclusion, and exon 8 skipping all represented products of the impaired rapid pathway, whereas the intron-8 inclusion product resulted from use of the slow intron 7-first pathway. The very low-abundance cryptic exon 8 donor site product could have arisen from either pathway. These results suggest that there is commitment of the pre-mRNA to the two pathways, independent of the presence of the mutation, and that the order and rate of intron removal are important determinants of the outcome of splice-site mutations and may explain some unusual alterations.

Full Text

The Full Text of this article is available as a PDF (428.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bateman J. F., Chan D., Moeller I., Hannagan M., Cole W. G. A 5' splice site mutation affecting the pre-mRNA splicing of two upstream exons in the collagen COL1A1 gene. Exon 8 skipping and altered definition of exon 7 generates truncated pro alpha 1(I) chains with a non-collagenous insertion destabilizing the triple helix. Biochem J. 1994 Sep 15;302(Pt 3):729–735. doi: 10.1042/bj3020729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berget S. M. Exon recognition in vertebrate splicing. J Biol Chem. 1995 Feb 10;270(6):2411–2414. doi: 10.1074/jbc.270.6.2411. [DOI] [PubMed] [Google Scholar]
  3. Bonadio J., Holbrook K. A., Gelinas R. E., Jacob J., Byers P. H. Altered triple helical structure of type I procollagen in lethal perinatal osteogenesis imperfecta. J Biol Chem. 1985 Feb 10;260(3):1734–1742. [PubMed] [Google Scholar]
  4. Carter M. S., Li S., Wilkinson M. F. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J. 1996 Nov 1;15(21):5965–5975. [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Cogan J. D., Prince M. A., Lekhakula S., Bundey S., Futrakul A., McCarthy E. M., Phillips J. A., 3rd A novel mechanism of aberrant pre-mRNA splicing in humans. Hum Mol Genet. 1997 Jun;6(6):909–912. doi: 10.1093/hmg/6.6.909. [DOI] [PubMed] [Google Scholar]
  7. D'Alessio M., Bernard M., Pretorius P. J., de Wet W., Ramirez F., Pretorious P. J. Complete nucleotide sequence of the region encompassing the first twenty-five exons of the human pro alpha 1(I) collagen gene (COL1A1) Gene. 1988 Jul 15;67(1):105–115. doi: 10.1016/0378-1119(88)90013-3. [DOI] [PubMed] [Google Scholar]
  8. Gudas J. M., Knight G. B., Pardee A. B. Ordered splicing of thymidine kinase pre-mRNA during the S phase of the cell cycle. Mol Cell Biol. 1990 Oct;10(10):5591–5595. doi: 10.1128/mcb.10.10.5591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hawkins J. D. A survey on intron and exon lengths. Nucleic Acids Res. 1988 Nov 11;16(21):9893–9908. doi: 10.1093/nar/16.21.9893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jarmolowski A., Boelens W. C., Izaurralde E., Mattaj I. W. Nuclear export of different classes of RNA is mediated by specific factors. J Cell Biol. 1994 Mar;124(5):627–635. doi: 10.1083/jcb.124.5.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kessler O., Jiang Y., Chasin L. A. Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Mol Cell Biol. 1993 Oct;13(10):6211–6222. doi: 10.1128/mcb.13.10.6211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kuivaniemi H., Kontusaari S., Tromp G., Zhao M. J., Sabol C., Prockop D. J. Identical G+1 to A mutations in three different introns of the type III procollagen gene (COL3A1) produce different patterns of RNA splicing in three variants of Ehlers-Danlos syndrome. IV. An explanation for exon skipping some mutations and not others. J Biol Chem. 1990 Jul 15;265(20):12067–12074. [PubMed] [Google Scholar]
  13. Kuivaniemi H., Tromp G., Prockop D. J. Mutations in fibrillar collagens (types I, II, III, and XI), fibril-associated collagen (type IX), and network-forming collagen (type X) cause a spectrum of diseases of bone, cartilage, and blood vessels. Hum Mutat. 1997;9(4):300–315. doi: 10.1002/(SICI)1098-1004(1997)9:4<300::AID-HUMU2>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  14. Lang K. M., Spritz R. A. RNA splice site selection: evidence for a 5' leads to 3' scanning model. Science. 1983 Jun 24;220(4604):1351–1355. doi: 10.1126/science.6304877. [DOI] [PubMed] [Google Scholar]
  15. Lang K. M., van Santen V. L., Spritz R. A. The two intervening sequences of human beta- and gamma-globin pre-mRNAs are excised in a preferred temporal order in vitro. EMBO J. 1985 Aug;4(8):1991–1996. doi: 10.1002/j.1460-2075.1985.tb03882.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Maquat L. E. Defects in RNA splicing and the consequence of shortened translational reading frames. Am J Hum Genet. 1996 Aug;59(2):279–286. [PMC free article] [PubMed] [Google Scholar]
  17. McCarthy E. M., Phillips J. A., 3rd Characterization of an intron splice enhancer that regulates alternative splicing of human GH pre-mRNA. Hum Mol Genet. 1998 Sep;7(9):1491–1496. doi: 10.1093/hmg/7.9.1491. [DOI] [PubMed] [Google Scholar]
  18. McCullough A. J., Berget S. M. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol Cell Biol. 1997 Aug;17(8):4562–4571. doi: 10.1128/mcb.17.8.4562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Michaud S., Reed R. A functional association between the 5' and 3' splice site is established in the earliest prespliceosome complex (E) in mammals. Genes Dev. 1993 Jun;7(6):1008–1020. doi: 10.1101/gad.7.6.1008. [DOI] [PubMed] [Google Scholar]
  20. Murray H. L., Jarrell K. A. Flipping the switch to an active spliceosome. Cell. 1999 Mar 5;96(5):599–602. doi: 10.1016/s0092-8674(00)80568-1. [DOI] [PubMed] [Google Scholar]
  21. Robberson B. L., Cote G. J., Berget S. M. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol Cell Biol. 1990 Jan;10(1):84–94. doi: 10.1128/mcb.10.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
  23. Schwarze U., Goldstein J. A., Byers P. H. Splicing defects in the COL3A1 gene: marked preference for 5' (donor) spice-site mutations in patients with exon-skipping mutations and Ehlers-Danlos syndrome type IV. Am J Hum Genet. 1997 Dec;61(6):1276–1286. doi: 10.1086/301641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Staley J. P., Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell. 1998 Feb 6;92(3):315–326. doi: 10.1016/s0092-8674(00)80925-3. [DOI] [PubMed] [Google Scholar]
  25. Talerico M., Berget S. M. Effect of 5' splice site mutations on splicing of the preceding intron. Mol Cell Biol. 1990 Dec;10(12):6299–6305. doi: 10.1128/mcb.10.12.6299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Willing M. C., Deschenes S. P., Scott D. A., Byers P. H., Slayton R. L., Pitts S. H., Arikat H., Roberts E. J. Osteogenesis imperfecta type I: molecular heterogeneity for COL1A1 null alleles of type I collagen. Am J Hum Genet. 1994 Oct;55(4):638–647. [PMC free article] [PubMed] [Google Scholar]
  27. Zafarullah K., Kleinert C., Tromp G., Kuivaniemi H., Kontusaari S., Wu Y. L., Ganguly A., Prockop D. J. G to A polymorphism in exon 31 of the COL3A1 gene. Nucleic Acids Res. 1990 Oct 25;18(20):6180–6180. doi: 10.1093/nar/18.20.6180. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES