Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Aug;65(2):370–386. doi: 10.1086/302510

Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints.

J M Amos-Landgraf 1, Y Ji 1, W Gottlieb 1, T Depinet 1, A E Wandstrat 1, S B Cassidy 1, D J Driscoll 1, P K Rogan 1, S Schwartz 1, R D Nicholls 1
PMCID: PMC1377936  PMID: 10417280

Abstract

Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct neurobehavioral disorders that most often arise from a 4-Mb deletion of chromosome 15q11-q13 during paternal or maternal gametogenesis, respectively. At a de novo frequency of approximately.67-1/10,000 births, these deletions represent a common structural chromosome change in the human genome. To elucidate the mechanism underlying these events, we characterized the regions that contain two proximal breakpoint clusters and a distal cluster. Novel DNA sequences potentially associated with the breakpoints were positionally cloned from YACs within or near these regions. Analyses of rodent-human somatic-cell hybrids, YAC contigs, and FISH of normal or rearranged chromosomes 15 identified duplicated sequences (the END repeats) at or near the breakpoints. The END-repeat units are derived from large genomic duplications of a novel gene (HERC2), many copies of which are transcriptionally active in germline tissues. One of five PWS/AS patients analyzed to date has an identifiable, rearranged HERC2 transcript derived from the deletion event. We postulate that the END repeats flanking 15q11-q13 mediate homologous recombination resulting in deletion. Furthermore, we propose that active transcription of these repeats in male and female germ cells may facilitate the homologous recombination process.

Full Text

The Full Text of this article is available as a PDF (989.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akefeldt A., Anvret M., Grandell U., Nordlinder R., Gillberg C. Parental exposure to hydrocarbons in Prader-Willi syndrome. Dev Med Child Neurol. 1995 Dec;37(12):1101–1109. doi: 10.1111/j.1469-8749.1995.tb11971.x. [DOI] [PubMed] [Google Scholar]
  2. Bachl J., Olsson C., Chitkara N., Wabl M. The Ig mutator is dependent on the presence, position, and orientation of the large intron enhancer. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2396–2399. doi: 10.1073/pnas.95.5.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baumer A., Dutly F., Balmer D., Riegel M., Tükel T., Krajewska-Walasek M., Schinzel A. A. High level of unequal meiotic crossovers at the origin of the 22q11. 2 and 7q11.23 deletions. Hum Mol Genet. 1998 May;7(5):887–894. doi: 10.1093/hmg/7.5.887. [DOI] [PubMed] [Google Scholar]
  4. Blair I. P., Nash J., Gordon M. J., Nicholson G. A. Prevalence and origin of de novo duplications in Charcot-Marie-Tooth disease type 1A: first report of a de novo duplication with a maternal origin. Am J Hum Genet. 1996 Mar;58(3):472–476. [PMC free article] [PubMed] [Google Scholar]
  5. Bort S., Martínez F., Palau F. Prevalence and parental origin of de novo 1.5-Mb duplication in Charcot-Marie-Tooth disease type 1A. Am J Hum Genet. 1997 Jan;60(1):230–233. [PMC free article] [PubMed] [Google Scholar]
  6. Breukel C., Wijnen J., Tops C., vd Klift H., Dauwerse H., Khan P. M. Vector-Alu PCR: a rapid step in mapping cosmids and YACs. Nucleic Acids Res. 1990 May 25;18(10):3097–3097. doi: 10.1093/nar/18.10.3097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Browne C. E., Dennis N. R., Maher E., Long F. L., Nicholson J. C., Sillibourne J., Barber J. C. Inherited interstitial duplications of proximal 15q: genotype-phenotype correlations. Am J Hum Genet. 1997 Dec;61(6):1342–1352. doi: 10.1086/301624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Buiting K., Greger V., Brownstein B. H., Mohr R. M., Voiculescu I., Winterpacht A., Zabel B., Horsthemke B. A putative gene family in 15q11-13 and 16p11.2: possible implications for Prader-Willi and Angelman syndromes. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5457–5461. doi: 10.1073/pnas.89.12.5457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buiting K., Gross S., Ji Y., Senger G., Nicholls R. D., Horsthemke B. Expressed copies of the MN7 (D15F37) gene family map close to the common deletion breakpoints in the Prader-Willi/Angelman syndromes. Cytogenet Cell Genet. 1998;81(3-4):247–253. doi: 10.1159/000015039. [DOI] [PubMed] [Google Scholar]
  10. Butler M. G. Prader-Willi syndrome: current understanding of cause and diagnosis. Am J Med Genet. 1990 Mar;35(3):319–332. doi: 10.1002/ajmg.1320350306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carrozzo R., Rossi E., Christian S. L., Kittikamron K., Livieri C., Corrias A., Pucci L., Fois A., Simi P., Bosio L. Inter- and intrachromosomal rearrangements are both involved in the origin of 15q11-q13 deletions in Prader-Willi syndrome. Am J Hum Genet. 1997 Jul;61(1):228–231. doi: 10.1086/513907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cassidy S. B., Gainey A. J., Butler M. G. Occupational hydrocarbon exposure among fathers of Prader-Willi syndrome patients with and without deletions of 15q. Am J Hum Genet. 1989 Jun;44(6):806–810. [PMC free article] [PubMed] [Google Scholar]
  13. Cassidy S. B. Prader-Willi syndrome. J Med Genet. 1997 Nov;34(11):917–923. doi: 10.1136/jmg.34.11.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen K. S., Manian P., Koeuth T., Potocki L., Zhao Q., Chinault A. C., Lee C. C., Lupski J. R. Homologous recombination of a flanking repeat gene cluster is a mechanism for a common contiguous gene deletion syndrome. Nat Genet. 1997 Oct;17(2):154–163. doi: 10.1038/ng1097-154. [DOI] [PubMed] [Google Scholar]
  15. Cheng S. D., Spinner N. B., Zackai E. H., Knoll J. H. Cytogenetic and molecular characterization of inverted duplicated chromosomes 15 from 11 patients. Am J Hum Genet. 1994 Oct;55(4):753–759. [PMC free article] [PubMed] [Google Scholar]
  16. Christian S. L., Bhatt N. K., Martin S. A., Sutcliffe J. S., Kubota T., Huang B., Mutirangura A., Chinault A. C., Beaudet A. L., Ledbetter D. H. Integrated YAC contig map of the Prader-Willi/Angelman region on chromosome 15q11-q13 with average STS spacing of 35 kb. Genome Res. 1998 Feb;8(2):146–157. doi: 10.1101/gr.8.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Christian S. L., Robinson W. P., Huang B., Mutirangura A., Line M. R., Nakao M., Surti U., Chakravarti A., Ledbetter D. H. Molecular characterization of two proximal deletion breakpoint regions in both Prader-Willi and Angelman syndrome patients. Am J Hum Genet. 1995 Jul;57(1):40–48. [PMC free article] [PubMed] [Google Scholar]
  18. Clayton-Smith J., Driscoll D. J., Waters M. F., Webb T., Andrews T., Malcolm S., Pembrey M. E., Nicholls R. D. Difference in methylation patterns within the D15S9 region of chromosome 15q11-13 in first cousins with Angelman syndrome and Prader-Willi syndrome. Am J Med Genet. 1993 Oct 1;47(5):683–686. doi: 10.1002/ajmg.1320470519. [DOI] [PubMed] [Google Scholar]
  19. Clayton-Smith J., Pembrey M. E. Angelman syndrome. J Med Genet. 1992 Jun;29(6):412–415. doi: 10.1136/jmg.29.6.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Clayton-Smith J., Webb T., Cheng X. J., Pembrey M. E., Malcolm S. Duplication of chromosome 15 in the region 15q11-13 in a patient with developmental delay and ataxia with similarities to Angelman syndrome. J Med Genet. 1993 Jun;30(6):529–531. doi: 10.1136/jmg.30.6.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Crolla J. A., Harvey J. F., Sitch F. L., Dennis N. R. Supernumerary marker 15 chromosomes: a clinical, molecular and FISH approach to diagnosis and prognosis. Hum Genet. 1995 Feb;95(2):161–170. doi: 10.1007/BF00209395. [DOI] [PubMed] [Google Scholar]
  22. Dutly F., Schinzel A. Unequal interchromosomal rearrangements may result in elastin gene deletions causing the Williams-Beuren syndrome. Hum Mol Genet. 1996 Dec;5(12):1893–1898. doi: 10.1093/hmg/5.12.1893. [DOI] [PubMed] [Google Scholar]
  23. Edelmann L., Pandita R. K., Morrow B. E. Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. Am J Hum Genet. 1999 Apr;64(4):1076–1086. doi: 10.1086/302343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Eichler E. E. Masquerading repeats: paralogous pitfalls of the human genome. Genome Res. 1998 Aug;8(8):758–762. doi: 10.1101/gr.8.8.758. [DOI] [PubMed] [Google Scholar]
  25. Gabriel J. M., Higgins M. J., Gebuhr T. C., Shows T. B., Saitoh S., Nicholls R. D. A model system to study genomic imprinting of human genes. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14857–14862. doi: 10.1073/pnas.95.25.14857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gray T. A., Saitoh S., Nicholls R. D. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5616–5621. doi: 10.1073/pnas.96.10.5616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Heiskanen M., Hellsten E., Kallioniemi O. P., Mäkelä T. P., Alitalo K., Peltonen L., Palotie A. Visual mapping by fiber-FISH. Genomics. 1995 Nov 1;30(1):31–36. doi: 10.1006/geno.1995.0005. [DOI] [PubMed] [Google Scholar]
  28. Huang B., Crolla J. A., Christian S. L., Wolf-Ledbetter M. E., Macha M. E., Papenhausen P. N., Ledbetter D. H. Refined molecular characterization of the breakpoints in small inv dup(15) chromosomes. Hum Genet. 1997 Jan;99(1):11–17. doi: 10.1007/s004390050301. [DOI] [PubMed] [Google Scholar]
  29. Ji Y., Walkowicz M. J., Buiting K., Johnson D. K., Tarvin R. E., Rinchik E. M., Horsthemke B., Stubbs L., Nicholls R. D. The ancestral gene for transcribed, low-copy repeats in the Prader-Willi/Angelman region encodes a large protein implicated in protein trafficking, which is deficient in mice with neuromuscular and spermiogenic abnormalities. Hum Mol Genet. 1999 Mar;8(3):533–542. doi: 10.1093/hmg/8.3.533. [DOI] [PubMed] [Google Scholar]
  30. Jong M. T., Gray T. A., Ji Y., Glenn C. C., Saitoh S., Driscoll D. J., Nicholls R. D. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet. 1999 May;8(5):783–793. doi: 10.1093/hmg/8.5.783. [DOI] [PubMed] [Google Scholar]
  31. Juyal R. C., Figuera L. E., Hauge X., Elsea S. H., Lupski J. R., Greenberg F., Baldini A., Patel P. I. Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients. Am J Hum Genet. 1996 May;58(5):998–1007. [PMC free article] [PubMed] [Google Scholar]
  32. Klein S., Zenvirth D., Sherman A., Ried K., Rappold G., Simchen G. Double-strand breaks on YACs during yeast meiosis may reflect meiotic recombination in the human genome. Nat Genet. 1996 Aug;13(4):481–484. doi: 10.1038/ng0896-481. [DOI] [PubMed] [Google Scholar]
  33. Knoll J. H., Nicholls R. D., Magenis R. E., Glatt K., Graham J. M., Jr, Kaplan L., Lalande M. Angelman syndrome: three molecular classes identified with chromosome 15q11q13-specific DNA markers. Am J Hum Genet. 1990 Jul;47(1):149–154. [PMC free article] [PubMed] [Google Scholar]
  34. Kuwano A., Mutirangura A., Dittrich B., Buiting K., Horsthemke B., Saitoh S., Niikawa N., Ledbetter S. A., Greenberg F., Chinault A. C. Molecular dissection of the Prader-Willi/Angelman syndrome region (15q11-13) by YAC cloning and FISH analysis. Hum Mol Genet. 1992 Sep;1(6):417–425. doi: 10.1093/hmg/1.6.417. [DOI] [PubMed] [Google Scholar]
  35. Lehman A. L., Nakatsu Y., Ching A., Bronson R. T., Oakey R. J., Keiper-Hrynko N., Finger J. N., Durham-Pierre D., Horton D. B., Newton J. M. A very large protein with diverse functional motifs is deficient in rjs (runty, jerky, sterile) mice. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9436–9441. doi: 10.1073/pnas.95.16.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lupski J. R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. 1998 Oct;14(10):417–422. doi: 10.1016/s0168-9525(98)01555-8. [DOI] [PubMed] [Google Scholar]
  37. Malzac P., Webber H., Moncla A., Graham J. M., Kukolich M., Williams C., Pagon R. A., Ramsdell L. A., Kishino T., Wagstaff J. Mutation analysis of UBE3A in Angelman syndrome patients. Am J Hum Genet. 1998 Jun;62(6):1353–1360. doi: 10.1086/301877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Maquat L. E. Defects in RNA splicing and the consequence of shortened translational reading frames. Am J Hum Genet. 1996 Aug;59(2):279–286. [PMC free article] [PubMed] [Google Scholar]
  39. Mascari M. J., Gottlieb W., Rogan P. K., Butler M. G., Waller D. A., Armour J. A., Jeffreys A. J., Ladda R. L., Nicholls R. D. The frequency of uniparental disomy in Prader-Willi syndrome. Implications for molecular diagnosis. N Engl J Med. 1992 Jun 11;326(24):1599–1607. doi: 10.1056/NEJM199206113262404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. McDaniel L. D., Schultz R. A. Elevated sister chromatid exchange phenotype of Bloom syndrome cells is complemented by human chromosome 15. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7968–7972. doi: 10.1073/pnas.89.17.7968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Nicholls R. D., Knoll J. H., Butler M. G., Karam S., Lalande M. Genetic imprinting suggested by maternal heterodisomy in nondeletion Prader-Willi syndrome. Nature. 1989 Nov 16;342(6247):281–285. doi: 10.1038/342281a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Nicholls R. D., Saitoh S., Horsthemke B. Imprinting in Prader-Willi and Angelman syndromes. Trends Genet. 1998 May;14(5):194–200. doi: 10.1016/s0168-9525(98)01432-2. [DOI] [PubMed] [Google Scholar]
  43. Nickoloff J. A. Transcription enhances intrachromosomal homologous recombination in mammalian cells. Mol Cell Biol. 1992 Dec;12(12):5311–5318. doi: 10.1128/mcb.12.12.5311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Nicolas A., Treco D., Schultes N. P., Szostak J. W. An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature. 1989 Mar 2;338(6210):35–39. doi: 10.1038/338035a0. [DOI] [PubMed] [Google Scholar]
  45. Osborne L. R., Herbrick J. A., Greavette T., Heng H. H., Tsui L. C., Scherer S. W. PMS2-related genes flank the rearrangement breakpoints associated with Williams syndrome and other diseases on human chromosome 7. Genomics. 1997 Oct 15;45(2):402–406. doi: 10.1006/geno.1997.4923. [DOI] [PubMed] [Google Scholar]
  46. Palau F., Löfgren A., De Jonghe P., Bort S., Nelis E., Sevilla T., Martin J. J., Vilchez J., Prieto F., Van Broeckhoven C. Origin of the de novo duplication in Charcot-Marie-Tooth disease type 1A: unequal nonsister chromatid exchange during spermatogenesis. Hum Mol Genet. 1993 Dec;2(12):2031–2035. doi: 10.1093/hmg/2.12.2031. [DOI] [PubMed] [Google Scholar]
  47. Purandare S. M., Patel P. I. Recombination hot spots and human disease. Genome Res. 1997 Aug;7(8):773–786. doi: 10.1101/gr.7.8.773. [DOI] [PubMed] [Google Scholar]
  48. Pérez Jurado L. A., Wang Y. K., Peoples R., Coloma A., Cruces J., Francke U. A duplicated gene in the breakpoint regions of the 7q11.23 Williams-Beuren syndrome deletion encodes the initiator binding protein TFII-I and BAP-135, a phosphorylation target of BTK. Hum Mol Genet. 1998 Mar;7(3):325–334. doi: 10.1093/hmg/7.3.325. [DOI] [PubMed] [Google Scholar]
  49. Repetto G. M., White L. M., Bader P. J., Johnson D., Knoll J. H. Interstitial duplications of chromosome region 15q11q13: clinical and molecular characterization. Am J Med Genet. 1998 Sep 1;79(2):82–89. doi: 10.1002/(sici)1096-8628(19980901)79:2<82::aid-ajmg2>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  50. Rinchik E. M., Carpenter D. A., Handel M. A. Pleiotropy in microdeletion syndromes: neurologic and spermatogenic abnormalities in mice homozygous for the p6H deletion are likely due to dysfunction of a single gene. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6394–6398. doi: 10.1073/pnas.92.14.6394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Robinson W. P., Binkert F., Giné R., Vazquez C., Müller W., Rosenkranz W., Schinzel A. Clinical and molecular analysis of five inv dup(15) patients. Eur J Hum Genet. 1993;1(1):37–50. doi: 10.1159/000472386. [DOI] [PubMed] [Google Scholar]
  52. Robinson W. P., Dutly F., Nicholls R. D., Bernasconi F., Peñaherrera M., Michaelis R. C., Abeliovich D., Schinzel A. A. The mechanisms involved in formation of deletions and duplications of 15q11-q13. J Med Genet. 1998 Feb;35(2):130–136. doi: 10.1136/jmg.35.2.130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Robinson W. P., Spiegel R., Schinzel A. A. Deletion breakpoints associated with the Prader-Willi and Angelman syndromes (15q11-q13) are not sites of high homologous recombination. Hum Genet. 1993 Mar;91(2):181–184. doi: 10.1007/BF00222722. [DOI] [PubMed] [Google Scholar]
  54. Sachs R. K., van den Engh G., Trask B., Yokota H., Hearst J. E. A random-walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2710–2714. doi: 10.1073/pnas.92.7.2710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schiestl R. H., Khogali F., Carls N. Reversion of the mouse pink-eyed unstable mutation induced by low doses of x-rays. Science. 1994 Dec 2;266(5190):1573–1576. doi: 10.1126/science.7985029. [DOI] [PubMed] [Google Scholar]
  56. Schinzel A. A., Brecevic L., Bernasconi F., Binkert F., Berthet F., Wuilloud A., Robinson W. P. Intrachromosomal triplication of 15q11-q13. J Med Genet. 1994 Oct;31(10):798–803. doi: 10.1136/jmg.31.10.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Spritz R. A., Bailin T., Nicholls R. D., Lee S. T., Park S. K., Mascari M. J., Butler M. G. Hypopigmentation in the Prader-Willi syndrome correlates with P gene deletion but not with haplotype of the hemizygous P allele. Am J Med Genet. 1997 Jul 11;71(1):57–62. doi: 10.1002/(sici)1096-8628(19970711)71:1<57::aid-ajmg11>3.0.co;2-u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Stavnezer J. Immunoglobulin class switching. Curr Opin Immunol. 1996 Apr;8(2):199–205. doi: 10.1016/s0952-7915(96)80058-6. [DOI] [PubMed] [Google Scholar]
  59. Strakowski S. M., Butler M. G. Paternal hydrocarbon exposure in Prader-Willi syndrome. Lancet. 1987 Dec 19;2(8573):1458–1458. doi: 10.1016/s0140-6736(87)91152-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Sullivan B. A., Jenkins L. S., Karson E. M., Leana-Cox J., Schwartz S. Evidence for structural heterogeneity from molecular cytogenetic analysis of dicentric Robertsonian translocations. Am J Hum Genet. 1996 Jul;59(1):167–175. [PMC free article] [PubMed] [Google Scholar]
  61. Sun Y., Nicholls R. D., Butler M. G., Saitoh S., Hainline B. E., Palmer C. G. Breakage in the SNRPN locus in a balanced 46,XY,t(15;19) Prader-Willi syndrome patient. Hum Mol Genet. 1996 Apr;5(4):517–524. doi: 10.1093/hmg/5.4.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Tantravahi U., Nicholls R. D., Stroh H., Ringer S., Neve R. L., Kaplan L., Wharton R., Wurster-Hill D., Graham J. M., Jr, Cantú E. S. Quantitative calibration and use of DNA probes for investigating chromosome abnormalities in the Prader-Willi syndrome. Am J Med Genet. 1989 May;33(1):78–87. doi: 10.1002/ajmg.1320330110. [DOI] [PubMed] [Google Scholar]
  63. Urbán Z., Helms C., Fekete G., Csiszár K., Bonnet D., Munnich A., Donis-Keller H., Boyd C. D. 7q11.23 deletions in Williams syndrome arise as a consequence of unequal meiotic crossover. Am J Hum Genet. 1996 Oct;59(4):958–962. [PMC free article] [PubMed] [Google Scholar]
  64. Voelkel-Meiman K., Keil R. L., Roeder G. S. Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell. 1987 Mar 27;48(6):1071–1079. doi: 10.1016/0092-8674(87)90714-8. [DOI] [PubMed] [Google Scholar]
  65. Wandstrat A. E., Leana-Cox J., Jenkins L., Schwartz S. Molecular cytogenetic evidence for a common breakpoint in the largest inverted duplications of chromosome 15. Am J Hum Genet. 1998 Apr;62(4):925–936. doi: 10.1086/301777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Webb T. Inv dup(15) supernumerary marker chromosomes. J Med Genet. 1994 Aug;31(8):585–594. doi: 10.1136/jmg.31.8.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Willard H. F., Holmes M. T. A sensitive and dependable assay for distinguishing hamster and human X-linked steroid sulfatase activity in somatic cell hybrids. Hum Genet. 1984;66(2-3):272–275. doi: 10.1007/BF00286615. [DOI] [PubMed] [Google Scholar]
  68. Wirth B., Schmidt T., Hahnen E., Rudnik-Schöneborn S., Krawczak M., Müller-Myhsok B., Schönling J., Zerres K. De novo rearrangements found in 2% of index patients with spinal muscular atrophy: mutational mechanisms, parental origin, mutation rate, and implications for genetic counseling. Am J Hum Genet. 1997 Nov;61(5):1102–1111. doi: 10.1086/301608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Wu T. C., Lichten M. Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science. 1994 Jan 28;263(5146):515–518. doi: 10.1126/science.8290959. [DOI] [PubMed] [Google Scholar]
  70. Zackowski J. L., Nicholls R. D., Gray B. A., Bent-Williams A., Gottlieb W., Harris P. J., Waters M. F., Driscoll D. J., Zori R. T., Williams C. A. Cytogenetic and molecular analysis in Angelman syndrome. Am J Med Genet. 1993 Apr 1;46(1):7–11. doi: 10.1002/ajmg.1320460104. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES