Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Aug;65(2):397–412. doi: 10.1086/302490

A genome scan for familial combined hyperlipidemia reveals evidence of linkage with a locus on chromosome 11.

B E Aouizerat 1, H Allayee 1, R M Cantor 1, R C Davis 1, C D Lanning 1, P Z Wen 1, G M Dallinga-Thie 1, T W de Bruin 1, J I Rotter 1, A J Lusis 1
PMCID: PMC1377938  PMID: 10417282

Abstract

Familial combined hyperlipidemia (FCHL) is a common familial lipid disorder characterized by a variable pattern of elevated levels of plasma cholesterol and/or triglycerides. It is present in 10%-20% of patients with premature coronary heart disease. The genetic etiology of the disease, including the number of genes involved and the magnitude of their effects, is unknown. Using a subset of 35 Dutch families ascertained for FCHL, we screened the genome, with a panel of 399 genetic markers, for chromosomal regions linked to genes contributing to FCHL. The results were analyzed by use of parametric-linkage methods in a two-stage study design. Four loci, on chromosomes 2p, 11p, 16q, and 19q, exhibited suggestive evidence for linkage with FCHL (LOD scores of 1.3-2.6). Markers within each of these regions were then examined in the original sample and in additional Dutch families with FCHL. The locus on chromosome 2 failed to show evidence for linkage, and the loci on chromosome 16q and 19q yielded only equivocal or suggestive evidence for linkage. However, one locus, near marker D11S1324 on the short arm of human chromosome 11, continued to show evidence for linkage with FCHL, in the second stage of this design. This region does not contain any strong candidate genes. These results provide evidence for a candidate chromosomal region for FCHL and support the concept that FCHL is complex and heterogeneous.

Full Text

The Full Text of this article is available as a PDF (372.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguilar-Salinas C. A., Hugh P., Barrett R., Pulai J., Zhu X. L., Schonfeld G. A familial combined hyperlipidemic kindred with impaired apolipoprotein B catabolism. Kinetics of apolipoprotein B during placebo and pravastatin therapy. Arterioscler Thromb Vasc Biol. 1997 Jan;17(1):72–82. doi: 10.1161/01.atv.17.1.72. [DOI] [PubMed] [Google Scholar]
  2. Aitman T. J., Godsland I. F., Farren B., Crook D., Wong H. J., Scott J. Defects of insulin action on fatty acid and carbohydrate metabolism in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 1997 Apr;17(4):748–754. doi: 10.1161/01.atv.17.4.748. [DOI] [PubMed] [Google Scholar]
  3. Allayee H., Aouizerat B. E., Cantor R. M., Dallinga-Thie G. M., Krauss R. M., Lanning C. D., Rotter J. I., Lusis A. J., de Bruin T. W. Families with familial combined hyperlipidemia and families enriched for coronary artery disease share genetic determinants for the atherogenic lipoprotein phenotype. Am J Hum Genet. 1998 Aug;63(2):577–585. doi: 10.1086/301983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aouizerat B. E., Allayee H., Bodnar J., Krass K. L., Peltonen L., de Bruin T. W., Rotter J. I., Lusis A. J. Novel genes for familial combined hyperlipidemia. Curr Opin Lipidol. 1999 Apr;10(2):113–122. doi: 10.1097/00041433-199904000-00005. [DOI] [PubMed] [Google Scholar]
  5. Bredie S. J., Demacker P. N., Stalenhoef A. F. Metabolic and genetic aspects of familial combined hyperlipidaemia with emphasis on low-density lipoprotein heterogeneity. Eur J Clin Invest. 1997 Oct;27(10):802–811. doi: 10.1046/j.1365-2362.1997.1850734.x. [DOI] [PubMed] [Google Scholar]
  6. Bredie S. J., Kiemeney L. A., de Haan A. F., Demacker P. N., Stalenhoef A. F. Inherited susceptibility determines the distribution of dense low-density lipoprotein subfraction profiles in familial combined hyperlipidemia. Am J Hum Genet. 1996 Apr;58(4):812–822. [PMC free article] [PubMed] [Google Scholar]
  7. Bredie S. J., van Drongelen J., Kiemeney L. A., Demacker P. N., Beaty T. H., Stalenhoef A. F. Segregation analysis of plasma apolipoprotein B levels in familial combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 1997 May;17(5):834–840. doi: 10.1161/01.atv.17.5.834. [DOI] [PubMed] [Google Scholar]
  8. Brunzell J. D., Albers J. J., Chait A., Grundy S. M., Groszek E., McDonald G. B. Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia. J Lipid Res. 1983 Feb;24(2):147–155. [PubMed] [Google Scholar]
  9. Cabezas M. C., de Bruin T. W., Jansen H., Kock L. A., Kortlandt W., Erkelens D. W. Impaired chylomicron remnant clearance in familial combined hyperlipidemia. Arterioscler Thromb. 1993 Jun;13(6):804–814. doi: 10.1161/01.atv.13.6.804. [DOI] [PubMed] [Google Scholar]
  10. Castellani L. W., Weinreb A., Bodnar J., Goto A. M., Doolittle M., Mehrabian M., Demant P., Lusis A. J. Mapping a gene for combined hyperlipidaemia in a mutant mouse strain. Nat Genet. 1998 Apr;18(4):374–377. doi: 10.1038/ng0498-374. [DOI] [PubMed] [Google Scholar]
  11. Castro Cabezas M., de Bruin T. W., Erkelens D. W. Familial combined hyperlipidaemia: 1973-1991. Neth J Med. 1992 Feb;40(1-2):83–95. [PubMed] [Google Scholar]
  12. Cianflone K., Maslowska M., Sniderman A. The acylation stimulating protein-adipsin system. Int J Obes Relat Metab Disord. 1995 May;19 (Suppl 1):S34–S38. [PubMed] [Google Scholar]
  13. Cortner J. A., Coates P. M., Bennett M. J., Cryer D. R., Le N. A. Familial combined hyperlipidaemia: use of stable isotopes to demonstrate overproduction of very low-density lipoprotein apolipoprotein B by the liver. J Inherit Metab Dis. 1991;14(6):915–922. doi: 10.1007/BF01800473. [DOI] [PubMed] [Google Scholar]
  14. Cottingham R. W., Jr, Idury R. M., Schäffer A. A. Faster sequential genetic linkage computations. Am J Hum Genet. 1993 Jul;53(1):252–263. [PMC free article] [PubMed] [Google Scholar]
  15. Cullen P., Farren B., Scott J., Farrall M. Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia. Arterioscler Thromb. 1994 Aug;14(8):1233–1249. doi: 10.1161/01.atv.14.8.1233. [DOI] [PubMed] [Google Scholar]
  16. Dallinga-Thie G. M., Bu X. D., van Linde-Sibenius Trip M., Rotter J. I., Lusis A. J., de Bruin T. W. Apolipoprotein A-I/C-III/A-IV gene cluster in familial combined hyperlipidemia: effects on LDL-cholesterol and apolipoproteins B and C-III. J Lipid Res. 1996 Jan;37(1):136–147. [PubMed] [Google Scholar]
  17. Dallinga-Thie G. M., van Linde-Sibenius Trip M., Rotter J. I., Cantor R. M., Bu X., Lusis A. J., de Bruin T. W. Complex genetic contribution of the Apo AI-CIII-AIV gene cluster to familial combined hyperlipidemia. Identification of different susceptibility haplotypes. J Clin Invest. 1997 Mar 1;99(5):953–961. doi: 10.1172/JCI119260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Dawson P. A., Ridgway N. D., Slaughter C. A., Brown M. S., Goldstein J. L. cDNA cloning and expression of oxysterol-binding protein, an oligomer with a potential leucine zipper. J Biol Chem. 1989 Oct 5;264(28):16798–16803. [PubMed] [Google Scholar]
  19. Goldstein J. L., Schrott H. G., Hazzard W. R., Bierman E. L., Motulsky A. G. Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest. 1973 Jul;52(7):1544–1568. doi: 10.1172/JCI107332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hanis C. L., Boerwinkle E., Chakraborty R., Ellsworth D. L., Concannon P., Stirling B., Morrison V. A., Wapelhorst B., Spielman R. S., Gogolin-Ewens K. J. A genome-wide search for human non-insulin-dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2. Nat Genet. 1996 Jun;13(2):161–166. doi: 10.1038/ng0696-161. [DOI] [PubMed] [Google Scholar]
  21. Haseman J. K., Elston R. C. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972 Mar;2(1):3–19. doi: 10.1007/BF01066731. [DOI] [PubMed] [Google Scholar]
  22. Hauser E. R., Boehnke M., Guo S. W., Risch N. Affected-sib-pair interval mapping and exclusion for complex genetic traits: sampling considerations. Genet Epidemiol. 1996;13(2):117–137. doi: 10.1002/(SICI)1098-2272(1996)13:2<117::AID-GEPI1>3.0.CO;2-5. [DOI] [PubMed] [Google Scholar]
  23. Hegele R. A., Sun F., Harris S. B., Anderson C., Hanley A. J., Zinman B. Genome-wide scanning for type 2 diabetes susceptibility in Canadian Oji-Cree, using 190 microsatellite markers. J Hum Genet. 1999;44(1):10–14. doi: 10.1007/s100380050097. [DOI] [PubMed] [Google Scholar]
  24. Iselius L. Complex segregation analysis of hypertriglyceridemia. Hum Hered. 1981;31(4):222–226. doi: 10.1159/000153212. [DOI] [PubMed] [Google Scholar]
  25. Jarvik G. P., Beaty T. H., Gallagher P. R., Coates P. M., Cortner J. A. Genotype at a major locus with large effects on apolipoprotein B levels predicts familial combined hyperlipidemia. Genet Epidemiol. 1993;10(4):257–270. doi: 10.1002/gepi.1370100406. [DOI] [PubMed] [Google Scholar]
  26. Jarvik G. P., Brunzell J. D., Austin M. A., Krauss R. M., Motulsky A. G., Wijsman E. Genetic predictors of FCHL in four large pedigrees. Influence of ApoB level major locus predicted genotype and LDL subclass phenotype. Arterioscler Thromb. 1994 Nov;14(11):1687–1694. doi: 10.1161/01.atv.14.11.1687. [DOI] [PubMed] [Google Scholar]
  27. Juo S. H., Bredie S. J., Kiemeney L. A., Demacker P. N., Stalenhoef A. F. A common genetic mechanism determines plasma apolipoprotein B levels and dense LDL subfraction distribution in familial combined hyperlipidemia. Am J Hum Genet. 1998 Aug;63(2):586–594. doi: 10.1086/301962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kissebah A. H., Alfarsi S., Adams P. W. Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: normolipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia. Metabolism. 1981 Sep;30(9):856–868. doi: 10.1016/0026-0495(81)90064-0. [DOI] [PubMed] [Google Scholar]
  29. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  30. Kruglyak L., Lander E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet. 1995 Aug;57(2):439–454. [PMC free article] [PubMed] [Google Scholar]
  31. Lagace T. A., Byers D. M., Cook H. W., Ridgway N. D. Chinese hamster ovary cells overexpressing the oxysterol binding protein (OSBP) display enhanced synthesis of sphingomyelin in response to 25-hydroxycholesterol. J Lipid Res. 1999 Jan;40(1):109–116. [PubMed] [Google Scholar]
  32. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3443–3446. doi: 10.1073/pnas.81.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lathrop G. M., Lalouel J. M., White R. L. Construction of human linkage maps: likelihood calculations for multilocus linkage analysis. Genet Epidemiol. 1986;3(1):39–52. doi: 10.1002/gepi.1370030105. [DOI] [PubMed] [Google Scholar]
  34. Levanon D., Hsieh C. L., Francke U., Dawson P. A., Ridgway N. D., Brown M. S., Goldstein J. L. cDNA cloning of human oxysterol-binding protein and localization of the gene to human chromosome 11 and mouse chromosome 19. Genomics. 1990 May;7(1):65–74. doi: 10.1016/0888-7543(90)90519-z. [DOI] [PubMed] [Google Scholar]
  35. Nikkilä E. A., Aro A. Family study of serum lipids and lipoproteins in coronary heart-disease. Lancet. 1973 May 5;1(7810):954–959. doi: 10.1016/s0140-6736(73)91598-5. [DOI] [PubMed] [Google Scholar]
  36. Pajukanta P., Nuotio I., Terwilliger J. D., Porkka K. V., Ylitalo K., Pihlajamäki J., Suomalainen A. J., Syvänen A. C., Lehtimäki T., Viikari J. S. Linkage of familial combined hyperlipidaemia to chromosome 1q21-q23. Nat Genet. 1998 Apr;18(4):369–373. doi: 10.1038/ng0498-369. [DOI] [PubMed] [Google Scholar]
  37. Pajukanta P., Porkka K. V., Antikainen M., Taskinen M. R., Perola M., Murtomäki-Repo S., Ehnholm S., Nuotio I., Suurinkeroinen L., Lahdenkari A. T. No evidence of linkage between familial combined hyperlipidemia and genes encoding lipolytic enzymes in Finnish families. Arterioscler Thromb Vasc Biol. 1997 May;17(5):841–850. doi: 10.1161/01.atv.17.5.841. [DOI] [PubMed] [Google Scholar]
  38. Reynisdottir S., Eriksson M., Angelin B., Arner P. Impaired activation of adipocyte lipolysis in familial combined hyperlipidemia. J Clin Invest. 1995 May;95(5):2161–2169. doi: 10.1172/JCI117905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ridgway N. D., Lagace T. A., Cook H. W., Byers D. M. Differential effects of sphingomyelin hydrolysis and cholesterol transport on oxysterol-binding protein phosphorylation and Golgi localization. J Biol Chem. 1998 Nov 20;273(47):31621–31628. doi: 10.1074/jbc.273.47.31621. [DOI] [PubMed] [Google Scholar]
  40. Rose H. G., Kranz P., Weinstock M., Juliano J., Haft J. I. Inheritance of combined hyperlipoproteinemia: evidence for a new lipoprotein phenotype. Am J Med. 1973 Feb;54(2):148–160. doi: 10.1016/0002-9343(73)90218-0. [DOI] [PubMed] [Google Scholar]
  41. Schäffer A. A., Gupta S. K., Shriram K., Cottingham R. W., Jr Avoiding recomputation in linkage analysis. Hum Hered. 1994 Jul-Aug;44(4):225–237. doi: 10.1159/000154222. [DOI] [PubMed] [Google Scholar]
  42. Storey M. K., Byers D. M., Cook H. W., Ridgway N. D. Cholesterol regulates oxysterol binding protein (OSBP) phosphorylation and Golgi localization in Chinese hamster ovary cells: correlation with stimulation of sphingomyelin synthesis by 25-hydroxycholesterol. Biochem J. 1998 Nov 15;336(Pt 1):247–256. doi: 10.1042/bj3360247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thomson G. Identifying complex disease genes: progress and paradigms. Nat Genet. 1994 Oct;8(2):108–110. doi: 10.1038/ng1094-108. [DOI] [PubMed] [Google Scholar]
  44. Vakkilainen J., Porkka K. V., Nuotio I., Pajukanta P., Suurinkeroinen L., Ylitalo K., Viikari J. S., Ehnholm C., Taskinen M. R. Glucose intolerance in familial combined hyperlipidaemia. EUFAM study group. Eur J Clin Invest. 1998 Jan;28(1):24–32. doi: 10.1046/j.1365-2362.1998.00243.x. [DOI] [PubMed] [Google Scholar]
  45. Venkatesan S., Cullen P., Pacy P., Halliday D., Scott J. Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia. Arterioscler Thromb. 1993 Jul;13(7):1110–1118. doi: 10.1161/01.atv.13.7.1110. [DOI] [PubMed] [Google Scholar]
  46. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
  47. Williams W. R., Lalouel J. M. Complex segregation analysis of hyperlipidemia in a Seattle sample. Hum Hered. 1982;32(1):24–36. doi: 10.1159/000153254. [DOI] [PubMed] [Google Scholar]
  48. Wojciechowski A. P., Farrall M., Cullen P., Wilson T. M., Bayliss J. D., Farren B., Griffin B. A., Caslake M. J., Packard C. J., Shepherd J. Familial combined hyperlipidaemia linked to the apolipoprotein AI-CII-AIV gene cluster on chromosome 11q23-q24. Nature. 1991 Jan 10;349(6305):161–164. doi: 10.1038/349161a0. [DOI] [PubMed] [Google Scholar]
  49. Yang W. S., Nevin D. N., Iwasaki L., Peng R., Brown B. G., Brunzell J. D., Deeb S. S. Regulatory mutations in the human lipoprotein lipase gene in patients with familial combined hyperlipidemia and coronary artery disease. J Lipid Res. 1996 Dec;37(12):2627–2637. [PubMed] [Google Scholar]
  50. Yuan B., Vaske D., Weber J. L., Beck J., Sheffield V. C. Improved set of short-tandem-repeat polymorphisms for screening the human genome. Am J Hum Genet. 1997 Feb;60(2):459–460. [PMC free article] [PubMed] [Google Scholar]
  51. van Barlingen H. H., Kock L. A., de Man F. H., Erkelens D. W., de Bruin T. W. In vitro lipolysis of human VLDL: effect of different VLDL compositions in normolipidemia, familial combined hyperlipidemia and familial hypertriglyceridemia. Atherosclerosis. 1996 Mar;121(1):75–84. doi: 10.1016/0021-9150(95)05703-x. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES