Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Aug;65(2):463–473. doi: 10.1086/302484

Evaluation of parental mitochondrial inheritance in neonates born after intracytoplasmic sperm injection.

C Danan 1, D Sternberg 1, A Van Steirteghem 1, C Cazeneuve 1, P Duquesnoy 1, C Besmond 1, M Goossens 1, W Lissens 1, S Amselem 1
PMCID: PMC1377945  PMID: 10417289

Abstract

Intracytoplasmic sperm injection (ICSI) is now used when severe male-factor infertility has been documented. Since defective mitochondrial functions may result in male hypofertility, it is of prime importance to evaluate the risk of paternal transmission of an mtDNA defect to neonates. DNA samples from the blood of 21 infertile couples and their 27 neonates born after ICSI were studied. The highly polymorphic mtDNA D-loop region was analyzed by four PCR-based approaches. With denaturing gradient gel electrophoresis (DGGE), which allows 2% of a minor mtDNA species to be detected, the 27 newborns had a DGGE pattern identical to that of their mother but different from that of their father. Heteroplasmy documented in several parents and children supported an exclusive maternal inheritance of mtDNA. The parental origin of the children's mtDNA molecules also was studied by more-sensitive assays: restriction-endonuclease analysis (REA) of alpha[32P]-radiolabeled PCR products; paternal-specific PCR assay; and depletion of maternal mtDNA, followed by REA. We did not detect paternal mtDNA in nine neonates, with a sensitivity level of 0.01% in five children, 0.1% in two children, and 1% in two children. The estimated ratio of sperm-to-oocyte mtDNA molecules in humans is 0.1%-1.5%. Thus, we conclude that, in these families, the ICSI procedure performed with mature spermatozoa did not alter the uniparental pattern of inheritance of mtDNA.

Full Text

The Full Text of this article is available as a PDF (448.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
  2. Antinori S., Versaci C., Dani G., Antinori M., Pozza D., Selman H. A. Fertilization with human testicular spermatids: four successful pregnancies. Hum Reprod. 1997 Feb;12(2):286–291. doi: 10.1093/humrep/12.2.286. [DOI] [PubMed] [Google Scholar]
  3. Attree O., Vidaud D., Vidaud M., Amselem S., Lavergne J. M., Goossens M. Mutations in the catalytic domain of human coagulation factor IX: rapid characterization by direct genomic sequencing of DNA fragments displaying an altered melting behavior. Genomics. 1989 Apr;4(3):266–272. doi: 10.1016/0888-7543(89)90330-3. [DOI] [PubMed] [Google Scholar]
  4. Barak Y., Kogosowski A., Goldman S., Soffer Y., Gonen Y., Tesarik J. Pregnancy and birth after transfer of embryos that developed from single-nucleated zygotes obtained by injection of round spermatids into oocytes. Fertil Steril. 1998 Jul;70(1):67–70. doi: 10.1016/s0015-0282(98)00106-x. [DOI] [PubMed] [Google Scholar]
  5. Bendall K. E., Sykes B. C. Length heteroplasmy in the first hypervariable segment of the human mtDNA control region. Am J Hum Genet. 1995 Aug;57(2):248–256. [PMC free article] [PubMed] [Google Scholar]
  6. Birky C. W., Jr Relaxed cellular controls and organelle heredity. Science. 1983 Nov 4;222(4623):468–475. doi: 10.1126/science.6353578. [DOI] [PubMed] [Google Scholar]
  7. Blendy J. A., Kaestner K. H., Weinbauer G. F., Nieschlag E., Schütz G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature. 1996 Mar 14;380(6570):162–165. doi: 10.1038/380162a0. [DOI] [PubMed] [Google Scholar]
  8. Chandley A. C., Cooke H. J. Human male fertility--Y-linked genes and spermatogenesis. Hum Mol Genet. 1994;3(Spec No):1449–1452. doi: 10.1093/hmg/3.suppl_1.1449. [DOI] [PubMed] [Google Scholar]
  9. Chen X., Prosser R., Simonetti S., Sadlock J., Jagiello G., Schon E. A. Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet. 1995 Aug;57(2):239–247. [PMC free article] [PubMed] [Google Scholar]
  10. Chillón M., Casals T., Mercier B., Bassas L., Lissens W., Silber S., Romey M. C., Ruiz-Romero J., Verlingue C., Claustres M. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens. N Engl J Med. 1995 Jun 1;332(22):1475–1480. doi: 10.1056/NEJM199506013322204. [DOI] [PubMed] [Google Scholar]
  11. Comas D., Päbo S., Bertranpetit J. Heteroplasmy in the control region of human mitochondrial DNA. Genome Res. 1995 Aug;5(1):89–90. doi: 10.1101/gr.5.1.89. [DOI] [PubMed] [Google Scholar]
  12. Costes B., Girodon E., Ghanem N., Flori E., Jardin A., Soufir J. C., Goossens M. Frequent occurrence of the CFTR intron 8 (TG)n 5T allele in men with congenital bilateral absence of the vas deferens. Eur J Hum Genet. 1995;3(5):285–293. doi: 10.1159/000472312. [DOI] [PubMed] [Google Scholar]
  13. Cummins J. M., Jequier A. M., Kan R. Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress? Mol Reprod Dev. 1994 Mar;37(3):345–362. doi: 10.1002/mrd.1080370314. [DOI] [PubMed] [Google Scholar]
  14. Fishel S., Green S., Bishop M., Thornton S., Hunter A., Fleming S., al-Hassan S. Pregnancy after intracytoplasmic injection of spermatid. Lancet. 1995 Jun 24;345(8965):1641–1642. doi: 10.1016/s0140-6736(95)90149-3. [DOI] [PubMed] [Google Scholar]
  15. Folgerø T., Bertheussen K., Lindal S., Torbergsen T., Oian P. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993 Nov;8(11):1863–1868. doi: 10.1093/oxfordjournals.humrep.a137950. [DOI] [PubMed] [Google Scholar]
  16. Giles R. E., Blanc H., Cann H. M., Wallace D. C. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6715–6719. doi: 10.1073/pnas.77.11.6715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gyllensten U., Wharton D., Josefsson A., Wilson A. C. Paternal inheritance of mitochondrial DNA in mice. Nature. 1991 Jul 18;352(6332):255–257. doi: 10.1038/352255a0. [DOI] [PubMed] [Google Scholar]
  18. Gyllensten U., Wharton D., Wilson A. C. Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice. J Hered. 1985 Sep-Oct;76(5):321–324. doi: 10.1093/oxfordjournals.jhered.a110103. [DOI] [PubMed] [Google Scholar]
  19. Hauswirth W. W., Clayton D. A. Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Res. 1985 Nov 25;13(22):8093–8104. doi: 10.1093/nar/13.22.8093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hiraoka J., Hirao Y. Fate of sperm tail components after incorporation into the hamster egg. Gamete Res. 1988 Apr;19(4):369–380. doi: 10.1002/mrd.1120190408. [DOI] [PubMed] [Google Scholar]
  21. Houshmand M., Holme E., Hanson C., Wennerholm U. B., Hamberger L. Is paternal mitochondrial DNA transferred to the offspring following intracytoplasmic sperm injection? J Assist Reprod Genet. 1997 Apr;14(4):223–227. doi: 10.1007/BF02766114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Huang M. M., Arnheim N., Goodman M. F. Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 1992 Sep 11;20(17):4567–4573. doi: 10.1093/nar/20.17.4567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hutchison C. A., 3rd, Newbold J. E., Potter S. S., Edgell M. H. Maternal inheritance of mammalian mitochondrial DNA. Nature. 1974 Oct 11;251(5475):536–538. doi: 10.1038/251536a0. [DOI] [PubMed] [Google Scholar]
  24. In't Veld P. A., Halley D. J., van Hemel J. O., Niermeijer M. F., Dohle G., Weber R. F. Genetic counselling before intracytoplasmic sperm injection. Lancet. 1997 Aug 16;350(9076):490–490. doi: 10.1016/s0140-6736(05)63078-4. [DOI] [PubMed] [Google Scholar]
  25. Kaneda H., Hayashi J., Takahama S., Taya C., Lindahl K. F., Yonekawa H. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4542–4546. doi: 10.1073/pnas.92.10.4542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kao S., Chao H. T., Wei Y. H. Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biol Reprod. 1995 Apr;52(4):729–736. doi: 10.1095/biolreprod52.4.729. [DOI] [PubMed] [Google Scholar]
  27. Kaukonen J. A., Amati P., Suomalainen A., Rötig A., Piscaglia M. G., Salvi F., Weissenbach J., Fratta G., Comi G., Peltonen L. An autosomal locus predisposing to multiple deletions of mtDNA on chromosome 3p. Am J Hum Genet. 1996 Apr;58(4):763–769. [PMC free article] [PubMed] [Google Scholar]
  28. Lerman L. S., Silverstein K. Computational simulation of DNA melting and its application to denaturing gradient gel electrophoresis. Methods Enzymol. 1987;155:482–501. doi: 10.1016/0076-6879(87)55032-7. [DOI] [PubMed] [Google Scholar]
  29. Lestienne P., Reynier P., Chrétien M. F., Penisson-Besnier I., Malthièry Y., Rohmer V. Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol Hum Reprod. 1997 Sep;3(9):811–814. doi: 10.1093/molehr/3.9.811. [DOI] [PubMed] [Google Scholar]
  30. Lissens W., Liebaers I. The genetics of male infertility in relation to cystic fibrosis. Baillieres Clin Obstet Gynaecol. 1997 Dec;11(4):797–817. doi: 10.1016/s0950-3552(97)80014-4. [DOI] [PubMed] [Google Scholar]
  31. Luft R. The development of mitochondrial medicine. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8731–8738. doi: 10.1073/pnas.91.19.8731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ma K., Inglis J. D., Sharkey A., Bickmore W. A., Hill R. E., Prosser E. J., Speed R. M., Thomson E. J., Jobling M., Taylor K. A Y chromosome gene family with RNA-binding protein homology: candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell. 1993 Dec 31;75(7):1287–1295. doi: 10.1016/0092-8674(93)90616-x. [DOI] [PubMed] [Google Scholar]
  33. Manfredi G., Thyagarajan D., Papadopoulou L. C., Pallotti F., Schon E. A. The fate of human sperm-derived mtDNA in somatic cells. Am J Hum Genet. 1997 Oct;61(4):953–960. doi: 10.1086/514887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nantel F., Monaco L., Foulkes N. S., Masquilier D., LeMeur M., Henriksén K., Dierich A., Parvinen M., Sassone-Corsi P. Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature. 1996 Mar 14;380(6570):159–162. doi: 10.1038/380159a0. [DOI] [PubMed] [Google Scholar]
  35. Reijo R., Alagappan R. K., Patrizio P., Page D. C. Severe oligozoospermia resulting from deletions of azoospermia factor gene on Y chromosome. Lancet. 1996 May 11;347(9011):1290–1293. doi: 10.1016/s0140-6736(96)90938-1. [DOI] [PubMed] [Google Scholar]
  36. Reijo R., Lee T. Y., Salo P., Alagappan R., Brown L. G., Rosenberg M., Rozen S., Jaffe T., Straus D., Hovatta O. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet. 1995 Aug;10(4):383–393. doi: 10.1038/ng0895-383. [DOI] [PubMed] [Google Scholar]
  37. Shitara H., Hayashi J. I., Takahama S., Kaneda H., Yonekawa H. Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics. 1998 Feb;148(2):851–857. doi: 10.1093/genetics/148.2.851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Smith L. C., Alcivar A. A. Cytoplasmic inheritance and its effects on development and performance. J Reprod Fertil Suppl. 1993;48:31–43. [PubMed] [Google Scholar]
  39. St John J. C., Cooke I. D., Barratt C. L. Mitochondrial mutations and male infertility. Nat Med. 1997 Feb;3(2):124–125. doi: 10.1038/nm0297-124c. [DOI] [PubMed] [Google Scholar]
  40. Sternberg D., Danan C., Lombès A., Laforêt P., Girodon E., Goossens M., Amselem S. Exhaustive scanning approach to screen all the mitochondrial tRNA genes for mutations and its application to the investigation of 35 independent patients with mitochondrial disorders. Hum Mol Genet. 1998 Jan;7(1):33–42. doi: 10.1093/hmg/7.1.33. [DOI] [PubMed] [Google Scholar]
  41. Szollosi D. The fate of sperm middle-piece mitochondria in the rat egg. J Exp Zool. 1965 Aug;159(3):367–377. doi: 10.1002/jez.1401590309. [DOI] [PubMed] [Google Scholar]
  42. Tapanainen J. S., Aittomäki K., Min J., Vaskivuo T., Huhtaniemi I. T. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet. 1997 Feb;15(2):205–206. doi: 10.1038/ng0297-205. [DOI] [PubMed] [Google Scholar]
  43. Tesarik J., Mendoza C. Spermatid injection into human oocytes. I. Laboratory techniques and special features of zygote development. Hum Reprod. 1996 Apr;11(4):772–779. doi: 10.1093/oxfordjournals.humrep.a019253. [DOI] [PubMed] [Google Scholar]
  44. Tesarik J., Mendoza C., Testart J. Viable embryos from injection of round spermatids into oocytes. N Engl J Med. 1995 Aug 24;333(8):525–525. doi: 10.1056/NEJM199508243330819. [DOI] [PubMed] [Google Scholar]
  45. Torroni A., Lott M. T., Cabell M. F., Chen Y. S., Lavergne L., Wallace D. C. mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet. 1994 Oct;55(4):760–776. [PMC free article] [PubMed] [Google Scholar]
  46. Van Steirteghem A. C., Nagy Z., Joris H., Liu J., Staessen C., Smitz J., Wisanto A., Devroey P. High fertilization and implantation rates after intracytoplasmic sperm injection. Hum Reprod. 1993 Jul;8(7):1061–1066. doi: 10.1093/oxfordjournals.humrep.a138192. [DOI] [PubMed] [Google Scholar]
  47. Van Steirteghem A., Nagy P., Joris H., Janssenswillen C., Staessen C., Verheyen G., Camus M., Tournaye H., Devroey P. Results of intracytoplasmic sperm injection with ejaculated, fresh and frozen-thawed epididymal and testicular spermatozoa. Hum Reprod. 1998 Apr;13 (Suppl 1):134–142. doi: 10.1093/humrep/13.suppl_1.134. [DOI] [PubMed] [Google Scholar]
  48. Van Steirteghem A., Tournaye H., Van der Elst J., Verheyen G., Liebaers I., Devroey P. Intracytoplasmic sperm injection three years after the birth of the first ICSI child. Hum Reprod. 1995 Oct;10(10):2527–2528. [PubMed] [Google Scholar]
  49. Vogt P. H. Human chromosome deletions in Yq11, AZF candidate genes and male infertility: history and update. Mol Hum Reprod. 1998 Aug;4(8):739–744. doi: 10.1093/molehr/4.8.739. [DOI] [PubMed] [Google Scholar]
  50. Wallace D. C. Mitochondrial DNA sequence variation in human evolution and disease. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8739–8746. doi: 10.1073/pnas.91.19.8739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zeviani M., Tiranti V., Piantadosi C. Mitochondrial disorders. Medicine (Baltimore) 1998 Jan;77(1):59–72. doi: 10.1097/00005792-199801000-00006. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES