Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Aug;65(2):531–544. doi: 10.1086/302487

Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure.

D B Allison 1, M C Neale 1, R Zannolli 1, N J Schork 1, C I Amos 1, J Blangero 1
PMCID: PMC1377951  PMID: 10417295

Abstract

Detection of linkage to genes for quantitative traits remains a challenging task. Recently, variance components (VC) techniques have emerged as among the more powerful of available methods. As often implemented, such techniques require assumptions about the phenotypic distribution. Usually, multivariate normality is assumed. However, several factors may lead to markedly nonnormal phenotypic data, including (a) the presence of a major gene (not necessarily linked to the markers under study), (b) some types of gene x environment interaction, (c) use of a dichotomous phenotype (i.e., affected vs. unaffected), (d) nonnormality of the population within-genotype (residual) distribution, and (e) selective (extreme) sampling. Using simulation, we have investigated, for sib-pair studies, the robustness of the likelihood-ratio test for a VC quantitative-trait locus-detection procedure to violations of normality that are due to these factors. Results showed (a) that some types of nonnormality, such as leptokurtosis, produced type I error rates in excess of the nominal, or alpha, levels whereas others did not; and (b) that the degree of type I error-rate inflation appears to be directly related to the residual sibling correlation. Potential solutions to this problem are discussed. Investigators contemplating use of this VC procedure are encouraged to provide evidence that their trait data are normally distributed, to employ a procedure that allows for nonnormal data, or to consider implementation of permutation tests.

Full Text

The Full Text of this article is available as a PDF (287.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison D. B., Heo M., Schork N. J., Wong S. L., Elston R. C. Extreme selection strategies in gene mapping studies of oligogenic quantitative traits do not always increase power. Hum Hered. 1998 Mar-Apr;48(2):97–107. doi: 10.1159/000022788. [DOI] [PubMed] [Google Scholar]
  2. Allison D. B., Schork N. J. Selected methodological issues in meiotic mapping of obesity genes in humans: issues of power and efficiency. Behav Genet. 1997 Jul;27(4):401–421. doi: 10.1023/a:1025696232582. [DOI] [PubMed] [Google Scholar]
  3. Allison D. B., Zannolli R., Faith M. S., Heo M., Pietrobelli A., VanItallie T. B., Pi-Sunyer F. X., Heymsfield S. B. Weight loss increases and fat loss decreases all-cause mortality rate: results from two independent cohort studies. Int J Obes Relat Metab Disord. 1999 Jun;23(6):603–611. doi: 10.1038/sj.ijo.0800875. [DOI] [PubMed] [Google Scholar]
  4. Almasy L., Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998 May;62(5):1198–1211. doi: 10.1086/301844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Amos C. I., Krushkal J., Thiel T. J., Young A., Zhu D. K., Boerwinkle E., de Andrade M. Comparison of model-free linkage mapping strategies for the study of a complex trait. Genet Epidemiol. 1997;14(6):743–748. doi: 10.1002/(SICI)1098-2272(1997)14:6<743::AID-GEPI30>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  6. Amos C. I. Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet. 1994 Mar;54(3):535–543. [PMC free article] [PubMed] [Google Scholar]
  7. Amos C. I., Zhu D. K., Boerwinkle E. Assessing genetic linkage and association with robust components of variance approaches. Ann Hum Genet. 1996 Mar;60(Pt 2):143–160. doi: 10.1111/j.1469-1809.1996.tb01184.x. [DOI] [PubMed] [Google Scholar]
  8. Astemborski J. A., Beaty T. H., Cohen B. H. Variance components analysis of forced expiration in families. Am J Med Genet. 1985 Aug;21(4):741–753. doi: 10.1002/ajmg.1320210417. [DOI] [PubMed] [Google Scholar]
  9. Beaty T. H., Liang K. Y. Robust inference for variance components models in families ascertained through probands: I. Conditioning on proband's phenotype. Genet Epidemiol. 1987;4(3):203–210. doi: 10.1002/gepi.1370040305. [DOI] [PubMed] [Google Scholar]
  10. Beaty T. H., Liang K. Y., Seerey S., Cohen B. H. Robust inference for variance components models in families ascertained through probands: II. Analysis of spirometric measures. Genet Epidemiol. 1987;4(3):211–221. doi: 10.1002/gepi.1370040306. [DOI] [PubMed] [Google Scholar]
  11. Beaty T. H., Self S. G., Liang K. Y., Connolly M. A., Chase G. A., Kwiterovich P. O. Use of robust variance components models to analyse triglyceride data in families. Ann Hum Genet. 1985 Oct;49(Pt 4):315–328. doi: 10.1111/j.1469-1809.1985.tb01707.x. [DOI] [PubMed] [Google Scholar]
  12. Christiaens G. C., Nieuwenhuis H. K., Bussel J. B. Comparison of platelet counts in first and second newborns of mothers with immune thrombocytopenic purpura. Obstet Gynecol. 1997 Oct;90(4 Pt 1):546–552. doi: 10.1016/s0029-7844(97)00349-9. [DOI] [PubMed] [Google Scholar]
  13. Comuzzie A. G., Hixson J. E., Almasy L., Mitchell B. D., Mahaney M. C., Dyer T. D., Stern M. P., MacCluer J. W., Blangero J. A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet. 1997 Mar;15(3):273–276. doi: 10.1038/ng0397-273. [DOI] [PubMed] [Google Scholar]
  14. Crawford D. H., Halliday J. W., Summers K. M., Bourke M. J., Powell L. W. Concordance of iron storage in siblings with genetic hemochromatosis: evidence for a predominantly genetic effect on iron storage. Hepatology. 1993 May;17(5):833–837. [PubMed] [Google Scholar]
  15. Dolan C. V., Boomsma D. I. Optimal selection of sib pairs from random samples for linkage analysis of a QTL using the EDAC test. Behav Genet. 1998 May;28(3):197–206. doi: 10.1023/a:1021423214032. [DOI] [PubMed] [Google Scholar]
  16. Duggirala R., Williams J. T., Williams-Blangero S., Blangero J. A variance component approach to dichotomous trait linkage analysis using a threshold model. Genet Epidemiol. 1997;14(6):987–992. doi: 10.1002/(SICI)1098-2272(1997)14:6<987::AID-GEPI71>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  17. Eaves L. J., Neale M. C., Maes H. Multivariate multipoint linkage analysis of quantitative trait loci. Behav Genet. 1996 Sep;26(5):519–525. doi: 10.1007/BF02359757. [DOI] [PubMed] [Google Scholar]
  18. Eaves L., Meyer J. Locating human quantitative trait loci: guidelines for the selection of sibling pairs for genotyping. Behav Genet. 1994 Sep;24(5):443–455. doi: 10.1007/BF01076180. [DOI] [PubMed] [Google Scholar]
  19. Fulker D. W., Cherny S. S. An improved multipoint sib-pair analysis of quantitative traits. Behav Genet. 1996 Sep;26(5):527–532. doi: 10.1007/BF02359758. [DOI] [PubMed] [Google Scholar]
  20. Haseman J. K., Elston R. C. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972 Mar;2(1):3–19. doi: 10.1007/BF01066731. [DOI] [PubMed] [Google Scholar]
  21. Hopper J. L., Mathews J. D. Extensions to multivariate normal models for pedigree analysis. II. Modeling the effect of shared environment in the analysis of variation in blood lead levels. Am J Epidemiol. 1983 Mar;117(3):344–355. doi: 10.1093/oxfordjournals.aje.a113547. [DOI] [PubMed] [Google Scholar]
  22. Hu L. T., Bentler P. M., Kano Y. Can test statistics in covariance structure analysis be trusted? Psychol Bull. 1992 Sep;112(2):351–362. doi: 10.1037/0033-2909.112.2.351. [DOI] [PubMed] [Google Scholar]
  23. Keith R. A., Van Loon J., Wussow L. F., Weinshilboum R. M. Thiol methylation pharmacogenetics: heritability of human erythrocyte thiol methyltransferase activity. Clin Pharmacol Ther. 1983 Oct;34(4):521–528. doi: 10.1038/clpt.1983.208. [DOI] [PubMed] [Google Scholar]
  24. Kruglyak L., Lander E. S. A nonparametric approach for mapping quantitative trait loci. Genetics. 1995 Mar;139(3):1421–1428. doi: 10.1093/genetics/139.3.1421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lander E. S., Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics. 1989 Jan;121(1):185–199. doi: 10.1093/genetics/121.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Motum P. I., Donald J. A., Trent R. J. Linkage analysis of the hemoglobin F determinant(s) in an Australian hemoglobin Lepore (Boston) kindred. Am J Hematol. 1993 May;43(1):37–43. doi: 10.1002/ajh.2830430109. [DOI] [PubMed] [Google Scholar]
  27. Pooni H., Jinks J. L. The efficiency and optimal size of triple test cross designs for detecting epistatic variation. Heredity (Edinb) 1976 Apr;36(2):215–227. doi: 10.1038/hdy.1976.26. [DOI] [PubMed] [Google Scholar]
  28. Pratley R. E., Thompson D. B., Prochazka M., Baier L., Mott D., Ravussin E., Sakul H., Ehm M. G., Burns D. K., Foroud T. An autosomal genomic scan for loci linked to prediabetic phenotypes in Pima Indians. J Clin Invest. 1998 Apr 15;101(8):1757–1764. doi: 10.1172/JCI1850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science. 1996 Sep 13;273(5281):1516–1517. doi: 10.1126/science.273.5281.1516. [DOI] [PubMed] [Google Scholar]
  30. Risch N., Zhang H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science. 1995 Jun 16;268(5217):1584–1589. doi: 10.1126/science.7777857. [DOI] [PubMed] [Google Scholar]
  31. Schork N. J., Allison D. B., Thiel B. Mixture distributions in human genetics research. Stat Methods Med Res. 1996 Jun;5(2):155–178. doi: 10.1177/096228029600500204. [DOI] [PubMed] [Google Scholar]
  32. Schork N. J., Weder A. B., Schork M. A., Bassett D. R., Julius S. Disease entities, mixed multi-normal distributions, and the role of the hyperkinetic state in the pathogenesis of hypertension. Stat Med. 1990 Mar;9(3):301–314. doi: 10.1002/sim.4780090313. [DOI] [PubMed] [Google Scholar]
  33. Schork N. J., Weder A. B., Schork M. A. On the asymmetry of biological frequency distributions. Genet Epidemiol. 1990;7(6):427–446. doi: 10.1002/gepi.1370070605. [DOI] [PubMed] [Google Scholar]
  34. Schork N. Efficient computation of patterned covariance matrix mixed models in quantitative segregation analysis. Genet Epidemiol. 1991;8(1):29–46. doi: 10.1002/gepi.1370080104. [DOI] [PubMed] [Google Scholar]
  35. Schork N., Schork M. A. Testing separate families of segregation hypotheses: bootstrap methods. Am J Hum Genet. 1989 Nov;45(5):803–813. [PMC free article] [PubMed] [Google Scholar]
  36. Wan Y., Cohen J., Guerra R. A permutation test for the robust sib-pair linkage method. Ann Hum Genet. 1997 Jan;61(Pt 1):79–87. doi: 10.1046/j.1469-1809.1997.6110077.x. [DOI] [PubMed] [Google Scholar]
  37. Wang J., Guerra R., Cohen J. Statistically robust approaches for sib-pair linkage analysis. Ann Hum Genet. 1998 Jul;62(Pt 4):349–359. doi: 10.1046/j.1469-1809.1998.6240349.x. [DOI] [PubMed] [Google Scholar]
  38. Wijsman E. M., Amos C. I. Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol. 1997;14(6):719–735. doi: 10.1002/(SICI)1098-2272(1997)14:6<719::AID-GEPI28>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  39. Wright F. A., Kong A. Linkage mapping in experimental crosses: the robustness of single-gene models. Genetics. 1997 May;146(1):417–425. doi: 10.1093/genetics/146.1.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wright F. A. The phenotypic difference discards sib-pair QTL linkage information. Am J Hum Genet. 1997 Mar;60(3):740–742. [PMC free article] [PubMed] [Google Scholar]
  41. de Andrade M., Thiel T. J., Yu L., Amos C. I. Assessing linkage on chromosome 5 using components of variance approach: univariate versus multivariate. Genet Epidemiol. 1997;14(6):773–778. doi: 10.1002/(SICI)1098-2272(1997)14:6<773::AID-GEPI35>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES