Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Sep;65(3):645–655. doi: 10.1086/302557

The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type-A/B; No phenotype prediction from the position of GLI3 mutations.

U Radhakrishna 1, D Bornholdt 1, H S Scott 1, U C Patel 1, C Rossier 1, H Engel 1, A Bottani 1, D Chandal 1, J L Blouin 1, J V Solanki 1, K H Grzeschik 1, S E Antonarakis 1
PMCID: PMC1377970  PMID: 10441570

Abstract

Functional characterization of a gene often requires the discovery of the full spectrum of its associated phenotypes. Mutations in the human GLI3 gene have been identified in Greig cepalopolysyndactyly, Pallister-Hall syndrome (PHS), and postaxial polydactyly type-A (PAP-A). We studied the involvement of GLI3 in additional phenotypes of digital abnormalities in one family (UR003) with preaxial polydactyly type-IV (PPD-IV), three families (UR014, UR015, and UR016) with dominant PAP-A/B (with PPD-A and -B in the same family), and one family with PHS. Linkage analysis showed no recombination with GLI3-linked polymorphisms. Family UR003 had a 1-nt frameshift insertion, resulting in a truncated protein of 1,245 amino acids. A frameshift mutation due to a 1-nt deletion was found in family UR014, resulting in a truncated protein of 1,280 amino acids. Family UR015 had a nonsense mutation, R643X, and family UR016 had a missense mutation, G727R, in a highly conserved amino acid of domain 3. The patient with PHS had a nonsense mutation, E1147X. These results add two phenotypes to the phenotypic spectrum caused by GLI3 mutations: the combined PAP-A/B and PPD-IV. These mutations do not support the suggested association between the mutations in GLI3 and the resulting phenotypes. We propose that all phenotypes associated with GLI3 mutations be called "GLI3 morphopathies," since the phenotypic borders of the resulting syndromes are not well defined and there is no apparent genotype-phenotype correlation.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aza-Blanc P., Ramírez-Weber F. A., Laget M. P., Schwartz C., Kornberg T. B. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell. 1997 Jun 27;89(7):1043–1053. doi: 10.1016/s0092-8674(00)80292-5. [DOI] [PubMed] [Google Scholar]
  2. Baraitser M., Winter R. M., Brett E. M. Greig cephalopolysyndactyly: report of 13 affected individuals in three families. Clin Genet. 1983 Oct;24(4):257–265. doi: 10.1111/j.1399-0004.1983.tb00080.x. [DOI] [PubMed] [Google Scholar]
  3. Biesecker L. G. Strike three for GLI3. Nat Genet. 1997 Nov;17(3):259–260. doi: 10.1038/ng1197-259. [DOI] [PubMed] [Google Scholar]
  4. Blouin J. L., Christie D. H., Gos A., Lynn A., Morris M. A., Ledbetter D. H., Chakravarti A., Antonarakis S. E. A new dinucleotide repeat polymorphism at the telomere of chromosome 21q reveals a significant difference between male and female rates of recombination. Am J Hum Genet. 1995 Aug;57(2):388–394. [PMC free article] [PubMed] [Google Scholar]
  5. Cottingham R. W., Jr, Idury R. M., Schäffer A. A. Faster sequential genetic linkage computations. Am J Hum Genet. 1993 Jul;53(1):252–263. [PMC free article] [PubMed] [Google Scholar]
  6. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  7. Domínguez M., Brunner M., Hafen E., Basler K. Sending and receiving the hedgehog signal: control by the Drosophila Gli protein Cubitus interruptus. Science. 1996 Jun 14;272(5268):1621–1625. doi: 10.1126/science.272.5268.1621. [DOI] [PubMed] [Google Scholar]
  8. Epstein C. J. The new dysmorphology: application of insights from basic developmental biology to the understanding of human birth defects. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8566–8573. doi: 10.1073/pnas.92.19.8566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hui C. C., Joyner A. L. A mouse model of greig cephalopolysyndactyly syndrome: the extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet. 1993 Mar;3(3):241–246. doi: 10.1038/ng0393-241. [DOI] [PubMed] [Google Scholar]
  10. Ishikiriyama S., Sawada H., Nambu H., Niikawa N. Crossed polydactyly type I in a mother and son: an autosomal dominant trait? Am J Med Genet. 1991 Jul 1;40(1):41–43. doi: 10.1002/ajmg.1320400108. [DOI] [PubMed] [Google Scholar]
  11. Johnson D. R. Extra-toes: anew mutant gene causing multiple abnormalities in the mouse. J Embryol Exp Morphol. 1967 Jun;17(3):543–581. [PubMed] [Google Scholar]
  12. Kang S., Graham J. M., Jr, Olney A. H., Biesecker L. G. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet. 1997 Mar;15(3):266–268. doi: 10.1038/ng0397-266. [DOI] [PubMed] [Google Scholar]
  13. Kang S., Rosenberg M., Ko V. D., Biesecker L. G. Gene structure and allelic expression assay of the human GLI3 gene. Hum Genet. 1997 Dec;101(2):154–157. doi: 10.1007/s004390050605. [DOI] [PubMed] [Google Scholar]
  14. Kucheria K., Kenue R. K., Taneja N. An Indian family with postaxial polydactyly in four generations. Clin Genet. 1981 Jul;20(1):36–39. doi: 10.1111/j.1399-0004.1981.tb01803.x. [DOI] [PubMed] [Google Scholar]
  15. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3443–3446. doi: 10.1073/pnas.81.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mehenni H., Gehrig C., Nezu J., Oku A., Shimane M., Rossier C., Guex N., Blouin J. L., Scott H. S., Antonarakis S. E. Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Hum Genet. 1998 Dec;63(6):1641–1650. doi: 10.1086/302159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Murray J. C., Buetow K. H., Weber J. L., Ludwigsen S., Scherpbier-Heddema T., Manion F., Quillen J., Sheffield V. C., Sunden S., Duyk G. M. A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). Science. 1994 Sep 30;265(5181):2049–2054. doi: 10.1126/science.8091227. [DOI] [PubMed] [Google Scholar]
  18. Orenic T. V., Slusarski D. C., Kroll K. L., Holmgren R. A. Cloning and characterization of the segment polarity gene cubitus interruptus Dominant of Drosophila. Genes Dev. 1990 Jun;4(6):1053–1067. doi: 10.1101/gad.4.6.1053. [DOI] [PubMed] [Google Scholar]
  19. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Radhakrishna U., Blouin J. L., Mehenni H., Patel U. C., Patel M. N., Solanki J. V., Antonarakis S. E. Mapping one form of autosomal dominant postaxial polydactyly type A to chromosome 7p15-q11.23 by linkage analysis. Am J Hum Genet. 1997 Mar;60(3):597–604. [PMC free article] [PubMed] [Google Scholar]
  21. Radhakrishna U., Wild A., Grzeschik K. H., Antonarakis S. E. Mutation in GLI3 in postaxial polydactyly type A. Nat Genet. 1997 Nov;17(3):269–271. doi: 10.1038/ng1197-269. [DOI] [PubMed] [Google Scholar]
  22. Reynolds J. F., Sommer A., Kelly T. E. Preaxial polydactyly type 4: variability in a large kindred. Clin Genet. 1984 Mar;25(3):267–272. doi: 10.1111/j.1399-0004.1984.tb01988.x. [DOI] [PubMed] [Google Scholar]
  23. Robbins D. J., Nybakken K. E., Kobayashi R., Sisson J. C., Bishop J. M., Thérond P. P. Hedgehog elicits signal transduction by means of a large complex containing the kinesin-related protein costal2. Cell. 1997 Jul 25;90(2):225–234. doi: 10.1016/s0092-8674(00)80331-1. [DOI] [PubMed] [Google Scholar]
  24. Ruiz i Altaba A. Catching a Gli-mpse of Hedgehog. Cell. 1997 Jul 25;90(2):193–196. doi: 10.1016/s0092-8674(00)80325-6. [DOI] [PubMed] [Google Scholar]
  25. Ruppert J. M., Vogelstein B., Arheden K., Kinzler K. W. GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity. Mol Cell Biol. 1990 Oct;10(10):5408–5415. doi: 10.1128/mcb.10.10.5408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schimmang T., Oda S. I., Rüther U. The mouse mutant Polydactyly Nagoya (Pdn) defines a novel allele of the zinc finger gene Gli3. Mamm Genome. 1994 Jun;5(6):384–386. doi: 10.1007/BF00356560. [DOI] [PubMed] [Google Scholar]
  27. Shin S. H., Kogerman P., Lindström E., Toftgárd R., Biesecker L. G. GLI3 mutations in human disorders mimic Drosophila cubitus interruptus protein functions and localization. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2880–2884. doi: 10.1073/pnas.96.6.2880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sisson J. C., Ho K. S., Suyama K., Scott M. P. Costal2, a novel kinesin-related protein in the Hedgehog signaling pathway. Cell. 1997 Jul 25;90(2):235–245. doi: 10.1016/s0092-8674(00)80332-3. [DOI] [PubMed] [Google Scholar]
  29. Thien H., Rüther U. The mouse mutation Pdn (Polydactyly Nagoya) is caused by the integration of a retrotransposon into the Gli3 gene. Mamm Genome. 1999 Mar;10(3):205–209. doi: 10.1007/s003359900973. [DOI] [PubMed] [Google Scholar]
  30. Verloes A., David A., Ngô L., Bottani A. Stringent delineation of Pallister-Hall syndrome in two long surviving patients: importance of radiological anomalies of the hands. J Med Genet. 1995 Aug;32(8):605–611. doi: 10.1136/jmg.32.8.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vortkamp A., Gessler M., Grzeschik K. H. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature. 1991 Aug 8;352(6335):539–540. doi: 10.1038/352539a0. [DOI] [PubMed] [Google Scholar]
  32. Wild A., Kalff-Suske M., Vortkamp A., Bornholdt D., König R., Grzeschik K. H. Point mutations in human GLI3 cause Greig syndrome. Hum Mol Genet. 1997 Oct;6(11):1979–1984. doi: 10.1093/hmg/6.11.1979. [DOI] [PubMed] [Google Scholar]
  33. van der Hoeven F., Schimmang T., Vortkamp A., Rüther U. Molecular linkage of the morphogenetic mutation add and the zinc finger gene Gli3. Mamm Genome. 1993;4(5):276–277. doi: 10.1007/BF00417435. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES