Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1999 Sep;65(3):885–901. doi: 10.1086/302524

Blocking Gibbs sampling for linkage analysis in large pedigrees with many loops.

C S Jensen 1, A Kong 1
PMCID: PMC1377993  PMID: 10441593

Abstract

We apply the method of "blocking Gibbs" sampling to a problem of great importance and complexity-linkage analysis. Blocking Gibbs sampling combines exact local computations with Gibbs sampling, in a way that complements the strengths of both. The method is able to handle problems with very high complexity, such as linkage analysis in large pedigrees with many loops, a task that no other known method is able to handle. New developments of the method are outlined, and it is applied to a highly complex linkage problem in a human pedigree.

Full Text

The Full Text of this article is available as a PDF (400.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cottingham R. W., Jr, Idury R. M., Schäffer A. A. Faster sequential genetic linkage computations. Am J Hum Genet. 1993 Jul;53(1):252–263. [PMC free article] [PubMed] [Google Scholar]
  2. Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
  3. Irwin M., Cox N., Kong A. Sequential imputation for multilocus linkage analysis. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11684–11688. doi: 10.1073/pnas.91.24.11684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jensen C. S., Sheehan N. Problems with determination of noncommunicating classes for Monte Carlo Markov chain applications in pedigree analysis. Biometrics. 1998 Jun;54(2):416–425. [PubMed] [Google Scholar]
  5. Kong A., Cox N., Frigge M., Irwin M. Sequential imputation and multipoint linkage analysis. Genet Epidemiol. 1993;10(6):483–488. doi: 10.1002/gepi.1370100626. [DOI] [PubMed] [Google Scholar]
  6. Kong A. Efficient methods for computing linkage likelihoods of recessive diseases in inbred pedigrees. Genet Epidemiol. 1991;8(2):81–103. doi: 10.1002/gepi.1370080203. [DOI] [PubMed] [Google Scholar]
  7. Lange K., Elston R. C. Extensions to pedigree analysis I. Likehood calculations for simple and complex pedigrees. Hum Hered. 1975;25(2):95–105. doi: 10.1159/000152714. [DOI] [PubMed] [Google Scholar]
  8. Lathrop G. M., Lalouel J. M. Easy calculations of lod scores and genetic risks on small computers. Am J Hum Genet. 1984 Mar;36(2):460–465. [PMC free article] [PubMed] [Google Scholar]
  9. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Multilocus linkage analysis in humans: detection of linkage and estimation of recombination. Am J Hum Genet. 1985 May;37(3):482–498. [PMC free article] [PubMed] [Google Scholar]
  10. Lin S., Thompson E., Wijsman E. Finding noncommunicating sets for Markov chain Monte Carlo estimations on pedigrees. Am J Hum Genet. 1994 Apr;54(4):695–704. [PMC free article] [PubMed] [Google Scholar]
  11. Schäffer A. A., Gupta S. K., Shriram K., Cottingham R. W., Jr Avoiding recomputation in linkage analysis. Hum Hered. 1994 Jul-Aug;44(4):225–237. doi: 10.1159/000154222. [DOI] [PubMed] [Google Scholar]
  12. Sheehan N., Thomas A. On the irreducibility of a Markov chain defined on a space of genotype configurations by a sampling scheme. Biometrics. 1993 Mar;49(1):163–175. [PubMed] [Google Scholar]
  13. Thomas D. C., Cortessis V. A Gibbs sampling approach to linkage analysis. Hum Hered. 1992;42(1):63–76. doi: 10.1159/000154046. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES