Abstract
More than 50% of spontaneous abortions (SAs) have abnormal chromosomes; the most common abnormalities are trisomy, sex chromosome monosomy, and polyploidy. Conventional cytogenetic analysis of SAs depends on tissue culturing and is associated with a significant tissue culture failure rate and contamination by maternally derived cells. Comparative genomic hybridization (CGH), in combination with flow cytometry (FCM), can detect numerical and unbalanced structural chromosomal abnormalities associated with SAs while avoiding the technical problems associated with tissue culture. Routine cytogenetic and CGH analysis was performed independently on tissue from 301 SAs. Samples shown to be chromosomally balanced by CGH were analyzed by FCM to determine ploidy. Of 253 samples successfully analyzed by both approaches, there was an absolute correlation of results in 235 (92.8%). Of the 18 cases with discrepancies between cytogenetic and CGH/FCM results, an explanation could be found in 17. Twelve samples produced a 46,XX karyotype by cytogenetics, whereas CGH/FCM demonstrated aneuploidy/polyploidy or a male genome, indicating maternal contamination of the tissue cultures. In two cases, where tetraploidy was demonstrated by cytogenetics and diploidy by FCM, tissue culture artifact is implied. In three cases, CGH demonstrated an aneuploidy, and cytogenetics demonstrated hypertriploidy. In one unexplainable case, aneuploidy demonstrated by CGH could not be detected by repeat CGH analysis, conventional cytogenetic, or FISH analysis. These results demonstrate that CGH supplemented with FCM can readily identify chromosomal abnormalities associated with SAs and, by avoiding maternal contamination and tissue culture artifacts, can do so with a lower failure rate and more accuracy than conventional cytogenetic analysis.
Full Text
The Full Text of this article is available as a PDF (156.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bell K. A., Van Deerlin P. G., Haddad B. R., Feinberg R. F. Cytogenetic diagnosis of "normal 46,XX" karyotypes in spontaneous abortions frequently may be misleading. Fertil Steril. 1999 Feb;71(2):334–341. doi: 10.1016/s0015-0282(98)00445-2. [DOI] [PubMed] [Google Scholar]
- Berezowsky J., Zbieranowski I., Demers J., Murray D. DNA ploidy of hydatidiform moles and nonmolar conceptuses: a study using flow and tissue section image cytometry. Mod Pathol. 1995 Sep;8(7):775–781. [PubMed] [Google Scholar]
- Bouié J., Philippe E., Giroud A., Boué A. Phenotypic expression of lethal chromosomal anomalies in human abortuses. Teratology. 1976 Aug;14(1):3–19. doi: 10.1002/tera.1420140103. [DOI] [PubMed] [Google Scholar]
- Bryndorf T., Kirchhoff M., Rose H., Maahr J., Gerdes T., Karhu R., Kallioniemi A., Christensen B., Lundsteen C., Philip J. Comparative genomic hybridization in clinical cytogenetics. Am J Hum Genet. 1995 Nov;57(5):1211–1220. [PMC free article] [PubMed] [Google Scholar]
- Creasy M. R., Crolla J. A., Alberman E. D. A cytogenetic study of human spontaneous abortions using banding techniques. Hum Genet. 1976 Feb 29;31(2):177–196. doi: 10.1007/BF00296145. [DOI] [PubMed] [Google Scholar]
- Daniely M., Aviram-Goldring A., Barkai G., Goldman B. Detection of chromosomal aberration in fetuses arising from recurrent spontaneous abortion by comparative genomic hybridization. Hum Reprod. 1998 Apr;13(4):805–809. doi: 10.1093/humrep/13.4.805. [DOI] [PubMed] [Google Scholar]
- Hedley D. W., Friedlander M. L., Taylor I. W., Rugg C. A., Musgrove E. A. Method for analysis of cellular DNA content of paraffin-embedded pathological material using flow cytometry. J Histochem Cytochem. 1983 Nov;31(11):1333–1335. doi: 10.1177/31.11.6619538. [DOI] [PubMed] [Google Scholar]
- Henderson K. G., Shaw T. E., Barrett I. J., Telenius A. H., Wilson R. D., Kalousek D. K. Distribution of mosaicism in human placentae. Hum Genet. 1996 May;97(5):650–654. doi: 10.1007/BF02281877. [DOI] [PubMed] [Google Scholar]
- Kajii T., Ferrier A., Niikawa N., Takahara H., Ohama K., Avirachan S. Anatomic and chromosomal anomalies in 639 spontaneous abortuses. Hum Genet. 1980;55(1):87–98. doi: 10.1007/BF00329132. [DOI] [PubMed] [Google Scholar]
- Kallioniemi A., Kallioniemi O. P., Sudar D., Rutovitz D., Gray J. W., Waldman F., Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992 Oct 30;258(5083):818–821. doi: 10.1126/science.1359641. [DOI] [PubMed] [Google Scholar]
- Kallioniemi O. P., Kallioniemi A., Piper J., Isola J., Waldman F. M., Gray J. W., Pinkel D. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 1994 Aug;10(4):231–243. doi: 10.1002/gcc.2870100403. [DOI] [PubMed] [Google Scholar]
- Kalousek D. K., Pantzar T., Tsai M., Paradice B. Early spontaneous abortion: morphologic and karyotypic findings in 3,912 cases. Birth Defects Orig Artic Ser. 1993;29(1):53–61. [PubMed] [Google Scholar]
- Kohn G., Robinson A. Tetraploidy in cells cultured from amniotic fluid. Lancet. 1970 Oct 10;2(7676):778–779. doi: 10.1016/s0140-6736(70)90262-x. [DOI] [PubMed] [Google Scholar]
- Lestou V. S., Lomax B. L., Barrett I. J., Kalousek D. K. Screening of human placentas for chromosomal mosaicism using comparative genomic hybridization. Teratology. 1999 May;59(5):325–330. doi: 10.1002/(SICI)1096-9926(199905)59:5<325::AID-TERA3>3.0.CO;2-N. [DOI] [PubMed] [Google Scholar]
- Levy B., Dunn T. M., Kaffe S., Kardon N., Hirschhorn K. Clinical applications of comparative genomic hybridization. Genet Med. 1998 Nov-Dec;1(1):4–12. doi: 10.1097/00125817-199811000-00004. [DOI] [PubMed] [Google Scholar]
- Lomax B. L., Lestou V. S., Barrett I. J., Kalousek D. K. Confined placental mosaicism for chromosome 7 detected by comparative genomic hybridization. Prenat Diagn. 1998 Jul;18(7):752–754. [PubMed] [Google Scholar]
- Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]