Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 Apr 4;66(5):1504–1515. doi: 10.1086/302899

Mutation analysis and embryonic expression of the HLXB9 Currarino syndrome gene.

D M Hagan 1, A J Ross 1, T Strachan 1, S A Lynch 1, V Ruiz-Perez 1, Y M Wang 1, P Scambler 1, E Custard 1, W Reardon 1, S Hassan 1, P Nixon 1, C Papapetrou 1, R M Winter 1, Y Edwards 1, K Morrison 1, M Barrow 1, M P Cordier-Alex 1, P Correia 1, P A Galvin-Parton 1, S Gaskill 1, K J Gaskin 1, S Garcia-Minaur 1, R Gereige 1, R Hayward 1, T Homfray 1
PMCID: PMC1378009  PMID: 10749657

Abstract

The HLXB9 homeobox gene was recently identified as a locus for autosomal dominant Currarino syndrome, also known as hereditary sacral agenesis (HSA). This gene specifies a 403-amino acid protein containing a homeodomain preceded by a very highly conserved 82-amino acid domain of unknown function; the remainder of the protein is not well conserved. Here we report an extensive mutation survey that has identified mutations in the HLXB9 gene in 20 of 21 patients tested with familial Currarino syndrome. Mutations were also detected in two of seven sporadic Currarino syndrome patients; the remainder could be explained by undetected mosaicism for an HLXB9 mutation or by genetic heterogeneity in the sporadic patients. Of the mutations identified in the 22 index patients, 19 were intragenic and included 11 mutations that could lead to the introduction of a premature termination codon. The other eight mutations were missense mutations that were significantly clustered in the homeodomain, resulting, in each patient, in nonconservative substitution of a highly conserved amino acid. All of the intragenic mutations were associated with comparable phenotypes. The only genotype-phenotype correlation appeared to be the occurrence of developmental delay in the case of three patients with microdeletions. HLXB9 expression was analyzed during early human development in a period spanning Carnegie stages 12-21. Signal was detected in the basal plate of the spinal cord and hindbrain and in the pharynx, esophagus, stomach, and pancreas. Significant spatial and temporal expression differences were evident when compared with expression of the mouse Hlxb9 gene, which may partly explain the significant human-mouse differences in mutant phenotype.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alles A. J., Sulik K. K. A review of caudal dysgenesis and its pathogenesis as illustrated in an animal model. Birth Defects Orig Artic Ser. 1993;29(1):83–102. [PubMed] [Google Scholar]
  2. Anderson F. M. Occult spinal dysraphism: a series of 73 cases. Pediatrics. 1975 Jun;55(6):826–835. [PubMed] [Google Scholar]
  3. Arber S., Han B., Mendelsohn M., Smith M., Jessell T. M., Sockanathan S. Requirement for the homeobox gene Hb9 in the consolidation of motor neuron identity. Neuron. 1999 Aug;23(4):659–674. doi: 10.1016/s0896-6273(01)80026-x. [DOI] [PubMed] [Google Scholar]
  4. Bellomonte D., Di Bernardo M, Russo R., Caronia G., Spinelli G. Highly restricted expression at the ectoderm-endoderm boundary of PIHbox 9, a sea urchin homeobox gene related to the human HB9 gene. Mech Dev. 1998 Jun;74(1-2):185–188. doi: 10.1016/s0925-4773(98)00064-1. [DOI] [PubMed] [Google Scholar]
  5. Belloni E., Martucciello G., Verderio D., Ponti E., Seri M., Jasonni V., Torre M., Ferrari M., Tsui L. C., Scherer S. W. Involvement of the HLXB9 homeobox gene in Currarino syndrome. Am J Hum Genet. 2000 Jan;66(1):312–319. doi: 10.1086/302723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bullen P. J., Robson S. C., Strachan T. Human post-implantation embryo collection: medical and surgical techniques. Early Hum Dev. 1998 Jul 10;51(3):213–221. doi: 10.1016/s0378-3782(97)00118-7. [DOI] [PubMed] [Google Scholar]
  7. Cavero Vargas E., Plauchu H., Rebaud A., Claris O., Chappuis J. P., Mellier G., Salle B. Anomalies du sacrum et déficit de fermeture du tube neural: manifestations différentes d'une même maladie génétique? Pediatrie. 1992;47(4):273–277. [PubMed] [Google Scholar]
  8. Currarino G., Coln D., Votteler T. Triad of anorectal, sacral, and presacral anomalies. AJR Am J Roentgenol. 1981 Aug;137(2):395–398. doi: 10.2214/ajr.137.2.395. [DOI] [PubMed] [Google Scholar]
  9. Dattani M. T., Martinez-Barbera J. P., Thomas P. Q., Brickman J. M., Gupta R., Mårtensson I. L., Toresson H., Fox M., Wales J. K., Hindmarsh P. C. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet. 1998 Jun;19(2):125–133. doi: 10.1038/477. [DOI] [PubMed] [Google Scholar]
  10. Di Rocco G., Mavilio F., Zappavigna V. Functional dissection of a transcriptionally active, target-specific Hox-Pbx complex. EMBO J. 1997 Jun 16;16(12):3644–3654. doi: 10.1093/emboj/16.12.3644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fougerousse F., Bullen P., Herasse M., Lindsay S., Richard I., Wilson D., Suel L., Durand M., Robson S., Abitbol M. Human-mouse differences in the embryonic expression patterns of developmental control genes and disease genes. Hum Mol Genet. 2000 Jan 22;9(2):165–173. doi: 10.1093/hmg/9.2.165. [DOI] [PubMed] [Google Scholar]
  12. Gaskill S. J., Marlin A. E. The Currarino triad: its importance in pediatric neurosurgery. Pediatr Neurosurg. 1996 Sep;25(3):143–146. doi: 10.1159/000121112. [DOI] [PubMed] [Google Scholar]
  13. Gehring W. J., Qian Y. Q., Billeter M., Furukubo-Tokunaga K., Schier A. F., Resendez-Perez D., Affolter M., Otting G., Wüthrich K. Homeodomain-DNA recognition. Cell. 1994 Jul 29;78(2):211–223. doi: 10.1016/0092-8674(94)90292-5. [DOI] [PubMed] [Google Scholar]
  14. Hardwick R. J., Onikul E., De Silva M., Glasson M. J., Gaskin K. J. Partial sacral agenesis with constipation: a report of one family. J Paediatr Child Health. 1992 Aug;28(4):328–330. doi: 10.1111/j.1440-1754.1992.tb02680.x. [DOI] [PubMed] [Google Scholar]
  15. Harrison K. A., Druey K. M., Deguchi Y., Tuscano J. M., Kehrl J. H. A novel human homeobox gene distantly related to proboscipedia is expressed in lymphoid and pancreatic tissues. J Biol Chem. 1994 Aug 5;269(31):19968–19975. [PubMed] [Google Scholar]
  16. Harrison K. A., Thaler J., Pfaff S. L., Gu H., Kehrl J. H. Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet. 1999 Sep;23(1):71–75. doi: 10.1038/12674. [DOI] [PubMed] [Google Scholar]
  17. Heus H. C., Hing A., van Baren M. J., Joosse M., Breedveld G. J., Wang J. C., Burgess A., Donnis-Keller H., Berglund C., Zguricas J. A physical and transcriptional map of the preaxial polydactyly locus on chromosome 7q36. Genomics. 1999 May 1;57(3):342–351. doi: 10.1006/geno.1999.5796. [DOI] [PubMed] [Google Scholar]
  18. Kalter H. Case reports of malformations associated with maternal diabetes: history and critique. Clin Genet. 1993 Apr;43(4):174–179. doi: 10.1111/j.1399-0004.1993.tb04443.x. [DOI] [PubMed] [Google Scholar]
  19. Kissinger C. R., Liu B. S., Martin-Blanco E., Kornberg T. B., Pabo C. O. Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell. 1990 Nov 2;63(3):579–590. doi: 10.1016/0092-8674(90)90453-l. [DOI] [PubMed] [Google Scholar]
  20. Li H., Arber S., Jessell T. M., Edlund H. Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet. 1999 Sep;23(1):67–70. doi: 10.1038/12669. [DOI] [PubMed] [Google Scholar]
  21. Lynch S. A., Bond P. M., Copp A. J., Kirwan W. O., Nour S., Balling R., Mariman E., Burn J., Strachan T. A gene for autosomal dominant sacral agenesis maps to the holoprosencephaly region at 7q36. Nat Genet. 1995 Sep;11(1):93–95. doi: 10.1038/ng0995-93. [DOI] [PubMed] [Google Scholar]
  22. Ming J. E., Muenke M. Holoprosencephaly: from Homer to Hedgehog. Clin Genet. 1998 Mar;53(3):155–163. doi: 10.1111/j.1399-0004.1998.tb02666.x. [DOI] [PubMed] [Google Scholar]
  23. Morichon-Delvallez N., Delezoide A. L., Vekemans M. Holoprosencephaly and sacral agenesis in a fetus with a terminal deletion 7q36-->7qter. J Med Genet. 1993 Jun;30(6):521–524. doi: 10.1136/jmg.30.6.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pfaff S. L., Mendelsohn M., Stewart C. L., Edlund T., Jessell T. M. Requirement for LIM homeobox gene Isl1 in motor neuron generation reveals a motor neuron-dependent step in interneuron differentiation. Cell. 1996 Jan 26;84(2):309–320. doi: 10.1016/s0092-8674(00)80985-x. [DOI] [PubMed] [Google Scholar]
  25. Riggs A. C., Tanizawa Y., Aoki M., Wasson J., Ferrer J., Rabin D. U., Vaxillaire M., Froguel P., Permutt M. A. Characterization of the LIM/homeodomain gene islet-1 and single nucleotide screening in NIDDM. Diabetes. 1995 Jun;44(6):689–694. doi: 10.2337/diab.44.6.689. [DOI] [PubMed] [Google Scholar]
  26. Ross A. J., Ruiz-Perez V., Wang Y., Hagan D. M., Scherer S., Lynch S. A., Lindsay S., Custard E., Belloni E., Wilson D. I. A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis. Nat Genet. 1998 Dec;20(4):358–361. doi: 10.1038/3828. [DOI] [PubMed] [Google Scholar]
  27. Saha M. S., Miles R. R., Grainger R. M. Dorsal-ventral patterning during neural induction in Xenopus: assessment of spinal cord regionalization with xHB9, a marker for the motor neuron region. Dev Biol. 1997 Jul 15;187(2):209–223. doi: 10.1006/dbio.1997.8625. [DOI] [PubMed] [Google Scholar]
  28. Savage N. M., Maclachlan N. A., Joyce C. A., Moore I. E., Crolla J. A. Isolated sacral agenesis in a fetus monosomic for 7q36.1-->qter. J Med Genet. 1997 Oct;34(10):866–868. doi: 10.1136/jmg.34.10.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Swaroop A., Wang Q. L., Wu W., Cook J., Coats C., Xu S., Chen S., Zack D. J., Sieving P. A. Leber congenital amaurosis caused by a homozygous mutation (R90W) in the homeodomain of the retinal transcription factor CRX: direct evidence for the involvement of CRX in the development of photoreceptor function. Hum Mol Genet. 1999 Feb;8(2):299–305. doi: 10.1093/hmg/8.2.299. [DOI] [PubMed] [Google Scholar]
  30. Tanabe Y., William C., Jessell T. M. Specification of motor neuron identity by the MNR2 homeodomain protein. Cell. 1998 Oct 2;95(1):67–80. doi: 10.1016/s0092-8674(00)81783-3. [DOI] [PubMed] [Google Scholar]
  31. Thaler J., Harrison K., Sharma K., Lettieri K., Kehrl J., Pfaff S. L. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron. 1999 Aug;23(4):675–687. doi: 10.1016/s0896-6273(01)80027-1. [DOI] [PubMed] [Google Scholar]
  32. Vargas F. R., Roessler E., Gaudenz K., Belloni E., Whitehead A. S., Kirke P. N., Mills J. L., Hooper G., Stevenson R. E., Cordeiro I. Analysis of the human Sonic Hedgehog coding and promoter regions in sacral agenesis, triphalangeal thumb, and mirror polydactyly. Hum Genet. 1998 Apr;102(4):387–392. doi: 10.1007/s004390050709. [DOI] [PubMed] [Google Scholar]
  33. Villa A., Santagata S., Bozzi F., Giliani S., Frattini A., Imberti L., Gatta L. B., Ochs H. D., Schwarz K., Notarangelo L. D. Partial V(D)J recombination activity leads to Omenn syndrome. Cell. 1998 May 29;93(5):885–896. doi: 10.1016/s0092-8674(00)81448-8. [DOI] [PubMed] [Google Scholar]
  34. Yamaguchi T. P., Bradley A., McMahon A. P., Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 1999 Mar;126(6):1211–1223. doi: 10.1242/dev.126.6.1211. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES