Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 Apr 4;66(5):1496–1503. doi: 10.1086/302895

Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain.

R L Touraine 1, T Attié-Bitach 1, E Manceau 1, E Korsch 1, P Sarda 1, V Pingault 1, F Encha-Razavi 1, A Pelet 1, J Augé 1, A Nivelon-Chevallier 1, A M Holschneider 1, M Munnes 1, W Doerfler 1, M Goossens 1, A Munnich 1, M Vekemans 1, S Lyonnet 1
PMCID: PMC1378013  PMID: 10762540

Abstract

Waardenburg syndrome type 4 (WS4), also called Shah-Waardenburg syndrome, is a rare neurocristopathy that results from the absence of melanocytes and intrinsic ganglion cells of the terminal hindgut. WS4 is inherited as an autosomal recessive trait attributable to EDN3 or EDNRB mutations. It is inherited as an autosomal dominant condition when SOX10 mutations are involved. We report on three unrelated WS4 patients with growth retardation and an as-yet-unreported neurological phenotype with impairment of both the central and autonomous nervous systems and occasionally neonatal hypotonia and arthrogryposis. Each of the three patients was heterozygous for a SOX10 truncating mutation (Y313X in two patients and S251X [corrected] in one patient). The extended spectrum of the WS4 phenotype is relevant to the brain expression of SOX10 during human embryonic and fetal development. Indeed, the expression of SOX10 in human embryo was not restricted to neural-crest-derived cells but also involved fetal brain cells, most likely of glial origin. These data emphasize the important role of SOX10 in early development of both neural-crest-derived tissues, namely melanocytes, autonomic and enteric nervous systems, and glial cells of the central nervous system.

Full Text

The Full Text of this article is available as a PDF (788.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attié T., Till M., Pelet A., Amiel J., Edery P., Boutrand L., Munnich A., Lyonnet S. Mutation of the endothelin-receptor B gene in Waardenburg-Hirschsprung disease. Hum Mol Genet. 1995 Dec;4(12):2407–2409. doi: 10.1093/hmg/4.12.2407. [DOI] [PubMed] [Google Scholar]
  2. Bidaud C., Salomon R., Van Camp G., Pelet A., Attié T., Eng C., Bonduelle M., Amiel J., Nihoul-Fékété C., Willems P. J. Endothelin-3 gene mutations in isolated and syndromic Hirschsprung disease. Eur J Hum Genet. 1997 Jul-Aug;5(4):247–251. [PubMed] [Google Scholar]
  3. Bolk S., Pelet A., Hofstra R. M., Angrist M., Salomon R., Croaker D., Buys C. H., Lyonnet S., Chakravarti A. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):268–273. doi: 10.1073/pnas.97.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bondurand N., Kobetz A., Pingault V., Lemort N., Encha-Razavi F., Couly G., Goerich D. E., Wegner M., Abitbol M., Goossens M. Expression of the SOX10 gene during human development. FEBS Lett. 1998 Aug 7;432(3):168–172. doi: 10.1016/s0014-5793(98)00843-6. [DOI] [PubMed] [Google Scholar]
  5. Branski D., Dennis N. R., Neale J. M., Brooks L. J. Hirschsprung's disease and Waardenburg's syndrome. Pediatrics. 1979 May;63(5):803–805. [PubMed] [Google Scholar]
  6. Cantani A., Bamonte G., Tacconi M. L. Mental retardation and EEG abnormalities in Waardenburg's syndrome: two case reports (EEG anomalies in Waardenburg's syndrome). Padiatr Padol. 1989;24(2):137–140. [PubMed] [Google Scholar]
  7. Delaney C. L., Brenner M., Messing A. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J Neurosci. 1996 Nov 1;16(21):6908–6918. doi: 10.1523/JNEUROSCI.16-21-06908.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Doray B., Salomon R., Amiel J., Pelet A., Touraine R., Billaud M., Attié T., Bachy B., Munnich A., Lyonnet S. Mutation of the RET ligand, neurturin, supports multigenic inheritance in Hirschsprung disease. Hum Mol Genet. 1998 Sep;7(9):1449–1452. doi: 10.1093/hmg/7.9.1449. [DOI] [PubMed] [Google Scholar]
  9. Edery P., Attié T., Amiel J., Pelet A., Eng C., Hofstra R. M., Martelli H., Bidaud C., Munnich A., Lyonnet S. Mutation of the endothelin-3 gene in the Waardenburg-Hirschsprung disease (Shah-Waardenburg syndrome). Nat Genet. 1996 Apr;12(4):442–444. doi: 10.1038/ng0496-442. [DOI] [PubMed] [Google Scholar]
  10. Inoue K., Tanabe Y., Lupski J. R. Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol. 1999 Sep;46(3):313–318. doi: 10.1002/1531-8249(199909)46:3<313::aid-ana6>3.0.co;2-7. [DOI] [PubMed] [Google Scholar]
  11. Kawabata E., Ohba N., Nakamura A., Izumo S., Osame M. Waardenburg syndrome: a variant with neurological involvement. Ophthalmic Paediatr Genet. 1987 Nov;8(3):165–170. doi: 10.3109/13816818709031463. [DOI] [PubMed] [Google Scholar]
  12. Kuhlbrodt K., Herbarth B., Sock E., Hermans-Borgmeyer I., Wegner M. Sox10, a novel transcriptional modulator in glial cells. J Neurosci. 1998 Jan 1;18(1):237–250. doi: 10.1523/JNEUROSCI.18-01-00237.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuhlbrodt K., Schmidt C., Sock E., Pingault V., Bondurand N., Goossens M., Wegner M. Functional analysis of Sox10 mutations found in human Waardenburg-Hirschsprung patients. J Biol Chem. 1998 Sep 4;273(36):23033–23038. doi: 10.1074/jbc.273.36.23033. [DOI] [PubMed] [Google Scholar]
  14. Maquat L. E. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA. 1995 Jul;1(5):453–465. [PMC free article] [PubMed] [Google Scholar]
  15. McKusick V. A. Congenital deafness and Hirschsprung's disease. N Engl J Med. 1973 Mar 29;288(13):691–691. doi: 10.1056/nejm197303292881321. [DOI] [PubMed] [Google Scholar]
  16. Moriggl R., Gouilleux-Gruart V., Jähne R., Berchtold S., Gartmann C., Liu X., Hennighausen L., Sotiropoulos A., Groner B., Gouilleux F. Deletion of the carboxyl-terminal transactivation domain of MGF-Stat5 results in sustained DNA binding and a dominant negative phenotype. Mol Cell Biol. 1996 Oct;16(10):5691–5700. doi: 10.1128/mcb.16.10.5691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Omenn G. S., McKusick V. A. The association of Waardenburg syndrome and Hirschsprung megacolon. Am J Med Genet. 1979;3(3):217–223. doi: 10.1002/ajmg.1320030302. [DOI] [PubMed] [Google Scholar]
  18. Pevny L. H., Lovell-Badge R. Sox genes find their feet. Curr Opin Genet Dev. 1997 Jun;7(3):338–344. doi: 10.1016/s0959-437x(97)80147-5. [DOI] [PubMed] [Google Scholar]
  19. Pingault V., Bondurand N., Kuhlbrodt K., Goerich D. E., Préhu M. O., Puliti A., Herbarth B., Hermans-Borgmeyer I., Legius E., Matthijs G. SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet. 1998 Feb;18(2):171–173. doi: 10.1038/ng0298-171. [DOI] [PubMed] [Google Scholar]
  20. Puffenberger E. G., Hosoda K., Washington S. S., Nakao K., deWit D., Yanagisawa M., Chakravart A. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell. 1994 Dec 30;79(7):1257–1266. doi: 10.1016/0092-8674(94)90016-7. [DOI] [PubMed] [Google Scholar]
  21. Read A. P., Newton V. E. Waardenburg syndrome. J Med Genet. 1997 Aug;34(8):656–665. doi: 10.1136/jmg.34.8.656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Salomon R., Attié T., Pelet A., Bidaud C., Eng C., Amiel J., Sarnacki S., Goulet O., Ricour C., Nihoul-Fékété C. Germline mutations of the RET ligand GDNF are not sufficient to cause Hirschsprung disease. Nat Genet. 1996 Nov;14(3):345–347. doi: 10.1038/ng1196-345. [DOI] [PubMed] [Google Scholar]
  23. Schuffler M. D., Bird T. D., Sumi S. M., Cook A. A familial neuronal disease presenting as intestinal pseudoobstruction. Gastroenterology. 1978 Nov;75(5):889–898. [PubMed] [Google Scholar]
  24. Shah K. N., Dalal S. J., Desai M. P., Sheth P. N., Joshi N. C., Ambani L. M. White forelock, pigmentary disorder of irides, and long segment Hirschsprung disease: possible variant of Waardenburg syndrome. J Pediatr. 1981 Sep;99(3):432–435. doi: 10.1016/s0022-3476(81)80339-3. [DOI] [PubMed] [Google Scholar]
  25. Singh S., Tang H. K., Lee J. Y., Saunders G. F. Truncation mutations in the transactivation region of PAX6 result in dominant-negative mutants. J Biol Chem. 1998 Aug 21;273(34):21531–21541. doi: 10.1074/jbc.273.34.21531. [DOI] [PubMed] [Google Scholar]
  26. Southard-Smith E. M., Angrist M., Ellison J. S., Agarwala R., Baxevanis A. D., Chakravarti A., Pavan W. J. The Sox10(Dom) mouse: modeling the genetic variation of Waardenburg-Shah (WS4) syndrome. Genome Res. 1999 Mar;9(3):215–225. [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES