Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 Apr 7;66(5):1642–1660. doi: 10.1086/302897

Composite statistics for QTL mapping with moderately discordant sibling pairs.

W F Forrest 1, E Feingold 1
PMCID: PMC1378022  PMID: 10762549

Abstract

Extreme discordant sibling-pair (EDSP) designs have been shown in theory to be very powerful for mapping quantitative-trait loci (QTLs) in humans. However, their practical applicability has been somewhat limited by the need to phenotype very large populations to find enough pairs that are extremely discordant. In this paper, we demonstrate that there is also substantial power in pairs that are only moderately discordant, and that designs using moderately discordant pairs can yield a more practical balance between phenotyping and genotyping efforts. The power we demonstrate for moderately discordant pairs stems from a new statistical result. Statistical analysis in discordant-pair studies is generally done by testing for reduced identity by descent (IBD) sharing in the pairs. By contrast, the most commonly-used statistical methods for more standard QTL mapping are Haseman-Elston regression and variance-components analysis. Both of these use statistics that are functions of the trait values given IBD information for the pedigree. We show that IBD sharing statistics and "trait value given IBD" statistics contribute complementary rather than redundant information, and thus that statistics of the two types can be combined to form more powerful tests of linkage. We propose a simple composite statistic, and test it with simulation studies. The simulation results show that our composite statistic increases power only minimally for extremely discordant pairs. However, it boosts the power of moderately discordant pairs substantially and makes them a very practical alternative. Our composite statistic is straightforward to calculate with existing software; we give a practical example of its use by applying it to a Genetic Analysis Workshop (GAW) data set.

Full Text

The Full Text of this article is available as a PDF (408.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcaïs A., Abel L. Maximum-Likelihood-Binomial method for genetic model-free linkage analysis of quantitative traits in sibships. Genet Epidemiol. 1999;17(2):102–117. doi: 10.1002/(SICI)1098-2272(1999)17:2<102::AID-GEPI2>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  2. Almasy L., Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet. 1998 May;62(5):1198–1211. doi: 10.1086/301844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amos C. I., Krushkal J., Thiel T. J., Young A., Zhu D. K., Boerwinkle E., de Andrade M. Comparison of model-free linkage mapping strategies for the study of a complex trait. Genet Epidemiol. 1997;14(6):743–748. doi: 10.1002/(SICI)1098-2272(1997)14:6<743::AID-GEPI30>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  4. Amos C. I. Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet. 1994 Mar;54(3):535–543. [PMC free article] [PubMed] [Google Scholar]
  5. Blackwelder W. C., Elston R. C. A comparison of sib-pair linkage tests for disease susceptibility loci. Genet Epidemiol. 1985;2(1):85–97. doi: 10.1002/gepi.1370020109. [DOI] [PubMed] [Google Scholar]
  6. Commenges D., Olson J., Wijsman E. The weighted rank pairwise correlation statistic for linkage analysis: simulation study and application to Alzheimer's disease. Genet Epidemiol. 1994;11(2):201–212. doi: 10.1002/gepi.1370110209. [DOI] [PubMed] [Google Scholar]
  7. Commenges D. Robust genetic linkage analysis based on a score test of homogeneity: the weighted pairwise correlation statistic. Genet Epidemiol. 1994;11(2):189–200. doi: 10.1002/gepi.1370110208. [DOI] [PubMed] [Google Scholar]
  8. Donnelly K. P. The probability that related individuals share some section of genome identical by descent. Theor Popul Biol. 1983 Feb;23(1):34–63. doi: 10.1016/0040-5809(83)90004-7. [DOI] [PubMed] [Google Scholar]
  9. Drigalenko E. How sib pairs reveal linkage. Am J Hum Genet. 1998 Oct;63(4):1242–1245. [PMC free article] [PubMed] [Google Scholar]
  10. Duggirala R., Blangero J., Almasy L., Dyer T. D., Williams K. L., Leach R. J., O'Connell P., Stern M. P. Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet. 1999 Apr;64(4):1127–1140. doi: 10.1086/302316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fisher S. E., Marlow A. J., Lamb J., Maestrini E., Williams D. F., Richardson A. J., Weeks D. E., Stein J. F., Monaco A. P. A quantitative-trait locus on chromosome 6p influences different aspects of developmental dyslexia. Am J Hum Genet. 1999 Jan;64(1):146–156. doi: 10.1086/302190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fulker D. W., Cherny S. S. An improved multipoint sib-pair analysis of quantitative traits. Behav Genet. 1996 Sep;26(5):527–532. doi: 10.1007/BF02359758. [DOI] [PubMed] [Google Scholar]
  13. Ghosh S., Watanabe R. M., Hauser E. R., Valle T., Magnuson V. L., Erdos M. R., Langefeld C. D., Balow J., Jr, Ally D. S., Kohtamaki K. Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2198–2203. doi: 10.1073/pnas.96.5.2198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gu C., Todorov A., Rao D. C. Combining extremely concordant sibpairs with extremely discordant sibpairs provides a cost effective way to linkage analysis of quantitative trait loci. Genet Epidemiol. 1996;13(6):513–533. doi: 10.1002/(SICI)1098-2272(1996)13:6<513::AID-GEPI1>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  15. Haseman J. K., Elston R. C. The investigation of linkage between a quantitative trait and a marker locus. Behav Genet. 1972 Mar;2(1):3–19. doi: 10.1007/BF01066731. [DOI] [PubMed] [Google Scholar]
  16. Knapp M. Evaluation of a restricted likelihood ratio test for mapping quantitative trait loci with extreme discordant sib pairs. Ann Hum Genet. 1998 Jan;62(Pt 1):75–87. doi: 10.1046/j.1469-1809.1998.6210075.x. [DOI] [PubMed] [Google Scholar]
  17. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  18. Kruglyak L., Lander E. S. Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet. 1995 Aug;57(2):439–454. [PMC free article] [PubMed] [Google Scholar]
  19. Kruse R., Seuchter S. A., Baur M. P., Knapp M. The "possible triangle" test for extreme discordant sib pairs. Genet Epidemiol. 1997;14(6):833–838. doi: 10.1002/(SICI)1098-2272(1997)14:6<833::AID-GEPI45>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
  20. MacCluer J. W., Blangero J., Dyer T. D., Speer M. C. GAW10: simulated family data for a common oligogenic disease with quantitative risk factors. Genet Epidemiol. 1997;14(6):737–742. doi: 10.1002/(SICI)1098-2272(1997)14:6<737::AID-GEPI29>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  21. McPeek M. S. Optimal allele-sharing statistics for genetic mapping using affected relatives. Genet Epidemiol. 1999;16(3):225–249. doi: 10.1002/(SICI)1098-2272(1999)16:3<225::AID-GEPI1>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  22. Nicolaou M., Premkumar S., DeStefano A. L., Farrer L. A., Cupples L. A. Power of concordant versus discordant sib pairs at different penetrance levels. Genet Epidemiol. 1999;17 (Suppl 1):S679–S684. doi: 10.1002/gepi.13701707111. [DOI] [PubMed] [Google Scholar]
  23. Pugh E. W., Jaquish C. E., Sorant A. J., Doetsch J. P., Bailey-Wilson J. E., Wilson A. F. Comparison of sib-pair and variance-components methods for genomic screening. Genet Epidemiol. 1997;14(6):867–872. doi: 10.1002/(SICI)1098-2272(1997)14:6<867::AID-GEPI51>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  24. Risch N., Zhang H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science. 1995 Jun 16;268(5217):1584–1589. doi: 10.1126/science.7777857. [DOI] [PubMed] [Google Scholar]
  25. Rochberg D. R., Rochberg N., Hampe C. L., Suarez B. K. The utility of deviant sib pairs in the detection of linkage. Genet Epidemiol. 1997;14(6):873–878. doi: 10.1002/(SICI)1098-2272(1997)14:6<873::AID-GEPI52>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  26. Rogus J. J., Harrington D. P., Jorgenson E., Xu X. Effectiveness of extreme discordant sib pairs to detect oligogenic disease loci. Genet Epidemiol. 1997;14(6):879–884. doi: 10.1002/(SICI)1098-2272(1997)14:6<879::AID-GEPI53>3.0.CO;2-J. [DOI] [PubMed] [Google Scholar]
  27. Sobel E., Lange K. Descent graphs in pedigree analysis: applications to haplotyping, location scores, and marker-sharing statistics. Am J Hum Genet. 1996 Jun;58(6):1323–1337. [PMC free article] [PubMed] [Google Scholar]
  28. Wright F. A. The phenotypic difference discards sib-pair QTL linkage information. Am J Hum Genet. 1997 Mar;60(3):740–742. [PMC free article] [PubMed] [Google Scholar]
  29. Xu X., Rogus J. J., Terwedow H. A., Yang J., Wang Z., Chen C., Niu T., Wang B., Xu H., Weiss S. An extreme-sib-pair genome scan for genes regulating blood pressure. Am J Hum Genet. 1999 Jun;64(6):1694–1701. doi: 10.1086/302405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zinn-Justin A., Abel L. Introduction of the IBD information into the weighted pairwise correlation method for linkage analysis. Genet Epidemiol. 1999;17(1):35–50. doi: 10.1002/(SICI)1098-2272(1999)17:1<35::AID-GEPI3>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  31. de Andrade M., Thiel T. J., Yu L., Amos C. I. Assessing linkage on chromosome 5 using components of variance approach: univariate versus multivariate. Genet Epidemiol. 1997;14(6):773–778. doi: 10.1002/(SICI)1098-2272(1997)14:6<773::AID-GEPI35>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES