Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 Apr 13;66(6):2009–2012. doi: 10.1086/302915

Unbiased application of the transmission/disequilibrium test to multilocus haplotypes.

F Dudbridge 1, B P Koeleman 1, J A Todd 1, D G Clayton 1
PMCID: PMC1378033  PMID: 10775523

Abstract

When the transmission/disequilibrium test (TDT) is applied to multilocus haplotypes, a bias may be introduced in some families for which both parents have the same heterozygous genotype at some locus. The bias occurs because haplotypes can only be deduced from certain offspring, with the result that the transmissions of the two parental haplotypes are not independent. We obtain an unbiased TDT for individual haplotypes by calculating the correct variance for the transmission count within a family, using information from multiple siblings if they are available. An existing correction for dependence between siblings in the presence of linkage is retained. To obtain an unbiased multihaplotype TDT, we must either count transmissions from one randomly chosen parent or count all transmissions and estimate the significance level empirically. Alternatively, we may use missing-data techniques to estimate uncertain haplotypes, but these methods are not robust to population stratification. An illustration using data from the insulin-gene region in type 1 diabetes shows that the validity and power of the TDT may vary by an order of magnitude, depending on the method of analysis.

Full Text

The Full Text of this article is available as a PDF (136.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett S. T., Lucassen A. M., Gough S. C., Powell E. E., Undlien D. E., Pritchard L. E., Merriman M. E., Kawaguchi Y., Dronsfield M. J., Pociot F. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet. 1995 Mar;9(3):284–292. doi: 10.1038/ng0395-284. [DOI] [PubMed] [Google Scholar]
  2. Clayton D. A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet. 1999 Oct;65(4):1170–1177. doi: 10.1086/302577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cleves M. A., Olson J. M., Jacobs K. B. Exact transmission-disequilibrium tests with multiallelic markers. Genet Epidemiol. 1997;14(4):337–347. doi: 10.1002/(SICI)1098-2272(1997)14:4<337::AID-GEPI1>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  4. Curtis D., Sham P. C. A note on the application of the transmission disequilibrium test when a parent is missing. Am J Hum Genet. 1995 Mar;56(3):811–812. [PMC free article] [PubMed] [Google Scholar]
  5. Curtis D. Use of siblings as controls in case-control association studies. Ann Hum Genet. 1997 Jul;61(Pt 4):319–333. doi: 10.1046/j.1469-1809.1998.6210089.x. [DOI] [PubMed] [Google Scholar]
  6. Falk C. T., Rubinstein P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum Genet. 1987 Jul;51(Pt 3):227–233. doi: 10.1111/j.1469-1809.1987.tb00875.x. [DOI] [PubMed] [Google Scholar]
  7. Hodge S. E., Boehnke M., Spence M. A. Loss of information due to ambiguous haplotyping of SNPs. Nat Genet. 1999 Apr;21(4):360–361. doi: 10.1038/7687. [DOI] [PubMed] [Google Scholar]
  8. Kaplan N. L., Martin E. R., Weir B. S. Power studies for the transmission/disequilibrium tests with multiple alleles. Am J Hum Genet. 1997 Mar;60(3):691–702. [PMC free article] [PubMed] [Google Scholar]
  9. Knapp M. The transmission/disequilibrium test and parental-genotype reconstruction: the reconstruction-combined transmission/ disequilibrium test. Am J Hum Genet. 1999 Mar;64(3):861–870. doi: 10.1086/302285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kruglyak L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet. 1999 Jun;22(2):139–144. doi: 10.1038/9642. [DOI] [PubMed] [Google Scholar]
  11. Lazzeroni L. C., Lange K. A conditional inference framework for extending the transmission/disequilibrium test. Hum Hered. 1998 Mar-Apr;48(2):67–81. doi: 10.1159/000022784. [DOI] [PubMed] [Google Scholar]
  12. Martin E. R., Kaplan N. L., Weir B. S. Tests for linkage and association in nuclear families. Am J Hum Genet. 1997 Aug;61(2):439–448. doi: 10.1086/514860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sham P. C., Curtis D. An extended transmission/disequilibrium test (TDT) for multi-allele marker loci. Ann Hum Genet. 1995 Jul;59(Pt 3):323–336. doi: 10.1111/j.1469-1809.1995.tb00751.x. [DOI] [PubMed] [Google Scholar]
  14. Spielman R. S., Ewens W. J. The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet. 1996 Nov;59(5):983–989. [PMC free article] [PubMed] [Google Scholar]
  15. Spielman R. S., McGinnis R. E., Ewens W. J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet. 1993 Mar;52(3):506–516. [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES