Abstract
Neocentromeres are fully functional centromeres that have arisen in previously noncentromeric chromosomal locations on rearranged chromosomes. The formation of neocentromeres results in the mitotic stability of chromosomal fragments that do not contain endogenous centromeres and that would normally be lost. Here we describe a unique collection of eight independent patient-derived cell lines, each of which contains a neocentromere on a supernumerary inversion duplication of a portion of human chromosome 13q. Findings in these patients reveal insight into the clinical manifestations associated with polysomy for portions of chromosome 13q. The results of FISH and immunofluorescent analysis of the neocentromeres in these chromosomes confirm the lack of alpha-satellite DNA and the presence of CENtromere proteins (CENP)-C, -E, and hMAD2. The positions of the inversion breakpoints in these chromosomes have been placed onto the physical map of chromosome 13, by means of FISH mapping with cosmid probes. These cell lines define, within chromosome 13q, at least three distinct locations where neocentromeres have formed, with five independent neocentromeres in band 13q32, two in band 13q21, and one in band 13q31. The results of examination of the set of 40 neocentromere-containing chromosomes that have thus far been described, including the 8 neocentromere-containing chromosomes from chromosome 13q that are described in the present study, suggest that chromosome 13q has an increased propensity for neocentromere formation, relative to some other human chromosomes. These neocentromeres will provide the means for testing hypotheses about sequence requirements for human centromere formation.
Full Text
The Full Text of this article is available as a PDF (412.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aagaard L., Schmid M., Warburton P., Jenuwein T. Mitotic phosphorylation of SUV39H1, a novel component of active centromeres, coincides with transient accumulation at mammalian centromeres. J Cell Sci. 2000 Mar;113(Pt 5):817–829. doi: 10.1242/jcs.113.5.817. [DOI] [PubMed] [Google Scholar]
- Barbi G., Kennerknecht I., Wöhr G., Avramopoulos D., Karadima G., Petersen M. B. Mirror-symmetric duplicated chromosome 21q with minor proximal deletion, and with neocentromere in a child without the classical Down syndrome phenotype. Am J Med Genet. 2000 Mar 13;91(2):116–122. doi: 10.1002/(sici)1096-8628(20000313)91:2<116::aid-ajmg7>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
- Barry A. E., Howman E. V., Cancilla M. R., Saffery R., Choo K. H. Sequence analysis of an 80 kb human neocentromere. Hum Mol Genet. 1999 Feb;8(2):217–227. doi: 10.1093/hmg/8.2.217. [DOI] [PubMed] [Google Scholar]
- Blennow E., Telenius H., de Vos D., Larsson C., Henriksson P., Johansson O., Carter N. P., Nordenskjöld M. Tetrasomy 15q: two marker chromosomes with no detectable alpha-satellite DNA. Am J Hum Genet. 1994 May;54(5):877–883. [PMC free article] [PubMed] [Google Scholar]
- Bukvic N., Susca F., Gentile M., Tangari E., Ianniruberto A., Guanti G. An unusual dicentric Y chromosome with a functional centromere with no detectable alpha-satellite. Hum Genet. 1996 Apr;97(4):453–456. doi: 10.1007/BF02267065. [DOI] [PubMed] [Google Scholar]
- Cayanis E., Russo J. J., Kalachikov S., Ye X., Park S. H., Sunjevaric I., Bonaldo M. F., Lawton L., Venkatraj V. S., Schon E. High-resolution YAC-cosmid-STS map of human chromosome 13. Genomics. 1998 Jan 1;47(1):26–43. doi: 10.1006/geno.1997.5087. [DOI] [PubMed] [Google Scholar]
- Choo K. H. Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet. 1997 Dec;61(6):1225–1233. doi: 10.1086/301657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu T. W., Teebi A. S., Gibson L., Breg W. R., Yang-Feng T. L. FISH diagnosis of partial trisomy 13 and tetrasomy 13 in a patient with severe trigonocephaly (C) phenotype. Am J Med Genet. 1994 Aug 1;52(1):92–96. doi: 10.1002/ajmg.1320520118. [DOI] [PubMed] [Google Scholar]
- Depinet T. W., Zackowski J. L., Earnshaw W. C., Kaffe S., Sekhon G. S., Stallard R., Sullivan B. A., Vance G. H., Van Dyke D. L., Willard H. F. Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. Hum Mol Genet. 1997 Aug;6(8):1195–1204. doi: 10.1093/hmg/6.8.1195. [DOI] [PubMed] [Google Scholar]
- Grimbacher B., Dutra A. S., Holland S. M., Fischer R. E., Pao M., Gallin J. I., Puck J. M. Analphoid marker chromosome in a patient with hyper-IgE syndrome, autism, and mild mental retardation. Genet Med. 1999 Jul-Aug;1(5):213–218. doi: 10.1097/00125817-199907000-00008. [DOI] [PubMed] [Google Scholar]
- Harrington J. J., Van Bokkelen G., Mays R. W., Gustashaw K., Willard H. F. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet. 1997 Apr;15(4):345–355. doi: 10.1038/ng0497-345. [DOI] [PubMed] [Google Scholar]
- He D., Zeng C., Woods K., Zhong L., Turner D., Busch R. K., Brinkley B. R., Busch H. CENP-G: a new centromeric protein that is associated with the alpha-1 satellite DNA subfamily. Chromosoma. 1998 Jun;107(3):189–197. doi: 10.1007/s004120050296. [DOI] [PubMed] [Google Scholar]
- Henning K. A., Novotny E. A., Compton S. T., Guan X. Y., Liu P. P., Ashlock M. A. Human artificial chromosomes generated by modification of a yeast artificial chromosome containing both human alpha satellite and single-copy DNA sequences. Proc Natl Acad Sci U S A. 1999 Jan 19;96(2):592–597. doi: 10.1073/pnas.96.2.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang B., Ning Y., Lamb A. N., Sandlin C. J., Jamehdor M., Ried T., Bartley J. Identification of an unusual marker chromosome by spectral karyotyping. Am J Med Genet. 1998 Dec 4;80(4):368–372. [PubMed] [Google Scholar]
- Ikeno M., Grimes B., Okazaki T., Nakano M., Saitoh K., Hoshino H., McGill N. I., Cooke H., Masumoto H. Construction of YAC-based mammalian artificial chromosomes. Nat Biotechnol. 1998 May;16(5):431–439. doi: 10.1038/nbt0598-431. [DOI] [PubMed] [Google Scholar]
- Koch J. Neocentromeres and alpha satellite: a proposed structural code for functional human centromere DNA. Hum Mol Genet. 2000 Jan 22;9(2):149–154. doi: 10.1093/hmg/9.2.149. [DOI] [PubMed] [Google Scholar]
- Li Y., Benezra R. Identification of a human mitotic checkpoint gene: hsMAD2. Science. 1996 Oct 11;274(5285):246–248. doi: 10.1126/science.274.5285.246. [DOI] [PubMed] [Google Scholar]
- Liu P., Siciliano J., Seong D., Craig J., Zhao Y., de Jong P. J., Siciliano M. J. Dual Alu polymerase chain reaction primers and conditions for isolation of human chromosome painting probes from hybrid cells. Cancer Genet Cytogenet. 1993 Feb;65(2):93–99. doi: 10.1016/0165-4608(93)90213-6. [DOI] [PubMed] [Google Scholar]
- Maraschio P., Tupler R., Rossi E., Barbierato L., Uccellatore F., Rocchi M., Zuffardi O., Fraccaro M. A novel mechanism for the origin of supernumerary marker chromosomes. Hum Genet. 1996 Mar;97(3):382–386. doi: 10.1007/BF02185778. [DOI] [PubMed] [Google Scholar]
- Murphy T. D., Karpen G. H. Centromeres take flight: alpha satellite and the quest for the human centromere. Cell. 1998 May 1;93(3):317–320. doi: 10.1016/s0092-8674(00)81158-7. [DOI] [PubMed] [Google Scholar]
- Ohashi H., Wakui K., Ogawa K., Okano T., Niikawa N., Fukushima Y. A stable acentric marker chromosome: possible existence of an intercalary ancient centromere at distal 8p. Am J Hum Genet. 1994 Dec;55(6):1202–1208. [PMC free article] [PubMed] [Google Scholar]
- Petit P., Fryns J. P. Interstitial deletion 2p accompanied by marker chromosome formation of the deleted segment resulting in a stable acentric marker chromosome. Genet Couns. 1997;8(4):341–343. [PubMed] [Google Scholar]
- Portnoï M. F., Boutchneï S., Bouscarat F., Morlier G., Nizard S., Dersarkissian H., Crickx B., Nouchy M., Taillemite J. L., Belaich S. Skin pigmentary anomalies and mosaicism for an acentric marker chromosome originating from 3q. J Med Genet. 1999 Mar;36(3):246–250. [PMC free article] [PubMed] [Google Scholar]
- Rivera H., Vasquez A. I., García-Cruz D., Crolla J. A. Neocentromere at 13q32 in one of two stable markers derived from a 13q21 break. Am J Med Genet. 1999 Aug 6;85(4):385–388. doi: 10.1002/(sici)1096-8628(19990806)85:4<385::aid-ajmg15>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
- Rivera H., Vassquez A. I., Ayala-Madrigal M. L., Ramirez-Dueñas M. L., Davalos I. P. Alphoidless centromere of a familial unstable inverted Y chromosome. Ann Genet. 1996;39(4):236–239. [PubMed] [Google Scholar]
- Sacchi N., Magnani I., Fuhrman-Conti A. M., Monard S. P., Darfler M. A stable marker chromosome with a cryptic centromere: evidence for centromeric sequences associated with an inverted duplication. Cytogenet Cell Genet. 1996;73(1-2):123–129. doi: 10.1159/000134322. [DOI] [PubMed] [Google Scholar]
- Saffery R., Irvine D. V., Griffiths B., Kalitsis P., Wordeman L., Choo K. H. Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. Hum Mol Genet. 2000 Jan 22;9(2):175–185. doi: 10.1093/hmg/9.2.175. [DOI] [PubMed] [Google Scholar]
- Shelby R. D., Vafa O., Sullivan K. F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol. 1997 Feb 10;136(3):501–513. doi: 10.1083/jcb.136.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slater H. R., Nouri S., Earle E., Lo A. W., Hale L. G., Choo K. H. Neocentromere formation in a stable ring 1p32-p36.1 chromosome. J Med Genet. 1999 Dec;36(12):914–918. [PMC free article] [PubMed] [Google Scholar]
- Sugata N., Munekata E., Todokoro K. Characterization of a novel kinetochore protein, CENP-H. J Biol Chem. 1999 Sep 24;274(39):27343–27346. doi: 10.1074/jbc.274.39.27343. [DOI] [PubMed] [Google Scholar]
- Sullivan B. A., Schwartz S. Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. Hum Mol Genet. 1995 Dec;4(12):2189–2197. doi: 10.1093/hmg/4.12.2189. [DOI] [PubMed] [Google Scholar]
- Tyler-Smith C., Gimelli G., Giglio S., Floridia G., Pandya A., Terzoli G., Warburton P. E., Earnshaw W. C., Zuffardi O. Transmission of a fully functional human neocentromere through three generations. Am J Hum Genet. 1999 May;64(5):1440–1444. doi: 10.1086/302380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vafa O., Sullivan K. F. Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr Biol. 1997 Nov 1;7(11):897–900. doi: 10.1016/s0960-9822(06)00381-2. [DOI] [PubMed] [Google Scholar]
- Van den Enden A., Verschraegen-Spae M. R., Van Roy N., Decaluwe W., De Praeter C., Speleman F. Mosaic tetrasomy 15q25-->qter in a newborn infant with multiple anomalies. Am J Med Genet. 1996 Jun 14;63(3):482–485. doi: 10.1002/(SICI)1096-8628(19960614)63:3<482::AID-AJMG13>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- Vance G. H., Curtis C. A., Heerema N. A., Schwartz S., Palmer C. G. An apparently acentric marker chromosome originating from 9p with a functional centromere without detectable alpha and beta satellite sequences. Am J Med Genet. 1997 Sep 5;71(4):436–442. doi: 10.1002/(sici)1096-8628(19970905)71:4<436::aid-ajmg13>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
- Voullaire L. E., Slater H. R., Petrovic V., Choo K. H. A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet. 1993 Jun;52(6):1153–1163. [PMC free article] [PubMed] [Google Scholar]
- Voullaire L., Saffery R., Davies J., Earle E., Kalitsis P., Slater H., Irvine D. V., Choo K. H. Trisomy 20p resulting from inverted duplication and neocentromere formation. Am J Med Genet. 1999 Aug 6;85(4):403–408. [PubMed] [Google Scholar]
- Wandall A., Tranebjaerg L., Tommerup N. A neocentromere on human chromosome 3 without detectable alpha-satellite DNA forms morphologically normal kinetochores. Chromosoma. 1998 Dec;107(6-7):359–365. doi: 10.1007/s004120050319. [DOI] [PubMed] [Google Scholar]
- Warburton P. E., Cooke C. A., Bourassa S., Vafa O., Sullivan B. A., Stetten G., Gimelli G., Warburton D., Tyler-Smith C., Sullivan K. F. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol. 1997 Nov 1;7(11):901–904. doi: 10.1016/s0960-9822(06)00382-4. [DOI] [PubMed] [Google Scholar]
- Warburton P. E. Making CENs of mammalian artificial chromosomes. Mol Genet Metab. 1999 Oct;68(2):152–160. doi: 10.1006/mgme.1999.2908. [DOI] [PubMed] [Google Scholar]
- Wiens G. R., Sorger P. K. Centromeric chromatin and epigenetic effects in kinetochore assembly. Cell. 1998 May 1;93(3):313–316. doi: 10.1016/s0092-8674(00)81157-5. [DOI] [PubMed] [Google Scholar]
- Williams B. C., Murphy T. D., Goldberg M. L., Karpen G. H. Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet. 1998 Jan;18(1):30–37. doi: 10.1038/ng0198-30. [DOI] [PubMed] [Google Scholar]
- du Manoir S., Speicher M. R., Joos S., Schröck E., Popp S., Döhner H., Kovacs G., Robert-Nicoud M., Lichter P., Cremer T. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. Hum Genet. 1993 Feb;90(6):590–610. doi: 10.1007/BF00202476. [DOI] [PubMed] [Google Scholar]
- du Sart D., Cancilla M. R., Earle E., Mao J. I., Saffery R., Tainton K. M., Kalitsis P., Martyn J., Barry A. E., Choo K. H. A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet. 1997 Jun;16(2):144–153. doi: 10.1038/ng0697-144. [DOI] [PubMed] [Google Scholar]