Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 2000 May 4;66(6):1945–1957. doi: 10.1086/302911

Parametric and nonparametric multipoint linkage analysis with imprinting and two-locus-trait models: application to mite sensitization.

K Strauch 1, R Fimmers 1, T Kurz 1, K A Deichmann 1, T F Wienker 1, M P Baur 1
PMCID: PMC1378058  PMID: 10796874

Abstract

We present two extensions to linkage analysis for genetically complex traits. The first extension allows investigators to perform parametric (LOD-score) analysis of traits caused by imprinted genes-that is, of traits showing a parent-of-origin effect. By specification of two heterozygote penetrance parameters, paternal and maternal origin of the mutation can be treated differently in terms of probability of expression of the trait. Therefore, a single-disease-locus-imprinting model includes four penetrances instead of only three. In the second extension, parametric and nonparametric linkage analysis with two trait loci is formulated for a multimarker setting, optionally taking imprinting into account. We have implemented both methods into the program GENEHUNTER. The new tools, GENEHUNTER-IMPRINTING and GENEHUNTER-TWOLOCUS, were applied to human family data for sensitization to mite allergens. The data set comprises pedigrees from England, Germany, Italy, and Portugal. With single-disease-locus-imprinting MOD-score analysis, we find several regions that show at least suggestive evidence for linkage. Most prominently, a maximum LOD score of 4.76 is obtained near D8S511, for the English population, when a model that implies complete maternal imprinting is used. Parametric two-trait-locus analysis yields a maximum LOD score of 6.09 for the German population, occurring exactly at D4S430 and D18S452. The heterogeneity model specified for analysis alludes to complete maternal imprinting at both disease loci. Altogether, our results suggest that the two novel formulations of linkage analysis provide valuable tools for genetic mapping of multifactorial traits.

Full Text

The Full Text of this article is available as a PDF (244.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abreu P. C., Greenberg D. A., Hodge S. E. Direct power comparisons between simple LOD scores and NPL scores for linkage analysis in complex diseases. Am J Hum Genet. 1999 Sep;65(3):847–857. doi: 10.1086/302536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barnes K. C., Marsh D. G. The genetics and complexity of allergy and asthma. Immunol Today. 1998 Jul;19(7):325–332. doi: 10.1016/s0167-5699(97)01241-3. [DOI] [PubMed] [Google Scholar]
  3. Bartolomei M. S., Tilghman S. M. Genomic imprinting in mammals. Annu Rev Genet. 1997;31:493–525. doi: 10.1146/annurev.genet.31.1.493. [DOI] [PubMed] [Google Scholar]
  4. Clerget-Darpoux F., Babron M. C., Bonaïti-Pellié C. Assessing the effect of multiple linkage tests in complex diseases. Genet Epidemiol. 1990;7(4):245–253. doi: 10.1002/gepi.1370070403. [DOI] [PubMed] [Google Scholar]
  5. Clerget-Darpoux F., Bonaïti-Pellié C., Hochez J. Effects of misspecifying genetic parameters in lod score analysis. Biometrics. 1986 Jun;42(2):393–399. [PubMed] [Google Scholar]
  6. Clerget-Darpoux F., Bonaïti-Pellié C. Strategies based on marker information for the study of human diseases. Ann Hum Genet. 1992 May;56(Pt 2):145–153. doi: 10.1111/j.1469-1809.1992.tb01140.x. [DOI] [PubMed] [Google Scholar]
  7. Cordell H. J., Todd J. A., Bennett S. T., Kawaguchi Y., Farrall M. Two-locus maximum lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes. Am J Hum Genet. 1995 Oct;57(4):920–934. [PMC free article] [PubMed] [Google Scholar]
  8. Cordell H. J., Wedig G. C., Jacobs K. B., Elston R. C. Multilocus linkage tests based on affected relative pairs. Am J Hum Genet. 2000 Mar 21;66(4):1273–1286. doi: 10.1086/302847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cox N. J., Frigge M., Nicolae D. L., Concannon P., Hanis C. L., Bell G. I., Kong A. Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans. Nat Genet. 1999 Feb;21(2):213–215. doi: 10.1038/6002. [DOI] [PubMed] [Google Scholar]
  10. Dib C., Fauré S., Fizames C., Samson D., Drouot N., Vignal A., Millasseau P., Marc S., Hazan J., Seboun E. A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature. 1996 Mar 14;380(6570):152–154. doi: 10.1038/380152a0. [DOI] [PubMed] [Google Scholar]
  11. Dupuis J., Brown P. O., Siegmund D. Statistical methods for linkage analysis of complex traits from high-resolution maps of identity by descent. Genetics. 1995 Jun;140(2):843–856. doi: 10.1093/genetics/140.2.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Durner M., Greenberg D. A., Hodge S. E. Inter- and intrafamilial heterogeneity: effective sampling strategies and comparison of analysis methods. Am J Hum Genet. 1992 Oct;51(4):859–870. [PMC free article] [PubMed] [Google Scholar]
  13. Durner M., Vieland V. J., Greenberg D. A. Further evidence for the increased power of LOD scores compared with nonparametric methods. Am J Hum Genet. 1999 Jan;64(1):281–289. doi: 10.1086/302181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Elston R. C. Man bites dog? The validity of maximizing lod scores to determine mode of inheritance. Am J Med Genet. 1989 Dec;34(4):487–488. doi: 10.1002/ajmg.1320340407. [DOI] [PubMed] [Google Scholar]
  15. Elston R. C., Stewart J. A general model for the genetic analysis of pedigree data. Hum Hered. 1971;21(6):523–542. doi: 10.1159/000152448. [DOI] [PubMed] [Google Scholar]
  16. Farrall M. Affected sibpair linkage tests for multiple linked susceptibility genes. Genet Epidemiol. 1997;14(2):103–115. doi: 10.1002/(SICI)1098-2272(1997)14:2<103::AID-GEPI1>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  17. Goldin L. R. Detection of linkage under heterogeneity: comparison of the two-locus vs. admixture models. Genet Epidemiol. 1992;9(1):61–66. doi: 10.1002/gepi.1370090107. [DOI] [PubMed] [Google Scholar]
  18. Goldin L. R., Weeks D. E. Two-locus models of disease: comparison of likelihood and nonparametric linkage methods. Am J Hum Genet. 1993 Oct;53(4):908–915. [PMC free article] [PubMed] [Google Scholar]
  19. Greenberg D. A., Abreu P., Hodge S. E. The power to detect linkage in complex disease by means of simple LOD-score analyses. Am J Hum Genet. 1998 Sep;63(3):870–879. doi: 10.1086/301997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Greenberg D. A., Berger B. Using lod-score differences to determine mode of inheritance: a simple, robust method even in the presence of heterogeneity and reduced penetrance. Am J Hum Genet. 1994 Oct;55(4):834–840. [PMC free article] [PubMed] [Google Scholar]
  21. Greenberg D. A., Hodge S. E. Linkage analysis under "random" and "genetic" reduced penetrance. Genet Epidemiol. 1989;6(1):259–264. doi: 10.1002/gepi.1370060145. [DOI] [PubMed] [Google Scholar]
  22. Greenberg D. A. Inferring mode of inheritance by comparison of lod scores. Am J Med Genet. 1989 Dec;34(4):480–486. doi: 10.1002/ajmg.1320340406. [DOI] [PubMed] [Google Scholar]
  23. Hall J. G. Genomic imprinting: review and relevance to human diseases. Am J Hum Genet. 1990 May;46(5):857–873. [PMC free article] [PubMed] [Google Scholar]
  24. Heutink P., van der Mey A. G., Sandkuijl L. A., van Gils A. P., Bardoel A., Breedveld G. J., van Vliet M., van Ommen G. J., Cornelisse C. J., Oostra B. A. A gene subject to genomic imprinting and responsible for hereditary paragangliomas maps to chromosome 11q23-qter. Hum Mol Genet. 1992 Apr;1(1):7–10. doi: 10.1093/hmg/1.1.7. [DOI] [PubMed] [Google Scholar]
  25. Hodge S. E., Abreu P. C., Greenberg D. A. Magnitude of type I error when single-locus linkage analysis is maximized over models: a simulation study. Am J Hum Genet. 1997 Jan;60(1):217–227. [PMC free article] [PubMed] [Google Scholar]
  26. Hodge S. E., Elston R. C. Lods, wrods, and mods: the interpretation of lod scores calculated under different models. Genet Epidemiol. 1994;11(4):329–342. doi: 10.1002/gepi.1370110403. [DOI] [PubMed] [Google Scholar]
  27. Howard T. D., Wiesch D. G., Koppelman G. H., Postma D. S., Meyers D. A., Bleecker E. R. Genetics of allergy and bronchial hyperresponsiveness. Clin Exp Allergy. 1999 Jun;29 (Suppl 2):86–89. doi: 10.1046/j.1365-2222.1999.00015.x. [DOI] [PubMed] [Google Scholar]
  28. Knapp M., Seuchter S. A., Baur M. P. Two-locus disease models with two marker loci: the power of affected-sib-pair tests. Am J Hum Genet. 1994 Nov;55(5):1030–1041. [PMC free article] [PubMed] [Google Scholar]
  29. Kruglyak L., Daly M. J., Lander E. S. Rapid multipoint linkage analysis of recessive traits in nuclear families, including homozygosity mapping. Am J Hum Genet. 1995 Feb;56(2):519–527. [PMC free article] [PubMed] [Google Scholar]
  30. Kruglyak L., Daly M. J., Reeve-Daly M. P., Lander E. S. Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet. 1996 Jun;58(6):1347–1363. [PMC free article] [PubMed] [Google Scholar]
  31. Kruglyak L., Lander E. S. Faster multipoint linkage analysis using Fourier transforms. J Comput Biol. 1998 Spring;5(1):1–7. doi: 10.1089/cmb.1998.5.1. [DOI] [PubMed] [Google Scholar]
  32. Lander E. S., Green P. Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci U S A. 1987 Apr;84(8):2363–2367. doi: 10.1073/pnas.84.8.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lathrop G. M., Lalouel J. M., Julier C., Ott J. Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3443–3446. doi: 10.1073/pnas.81.11.3443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. MacLean C. J., Bishop D. T., Sherman S. L., Diehl S. R. Distribution of lod scores under uncertain mode of inheritance. Am J Hum Genet. 1993 Feb;52(2):354–361. [PMC free article] [PubMed] [Google Scholar]
  35. MacLean C. J., Ploughman L. M., Diehl S. R., Kendler K. S. A new test for linkage in the presence of locus heterogeneity. Am J Hum Genet. 1992 Jun;50(6):1259–1266. [PMC free article] [PubMed] [Google Scholar]
  36. MacLean C. J., Sham P. C., Kendler K. S. Joint linkage of multiple loci for a complex disorder. Am J Hum Genet. 1993 Aug;53(2):353–366. [PMC free article] [PubMed] [Google Scholar]
  37. Morton N. E. Significance levels in complex inheritance. Am J Hum Genet. 1998 Mar;62(3):690–697. doi: 10.1086/301741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Neuman R. J., Rice J. P. Two-locus models of disease. Genet Epidemiol. 1992;9(5):347–365. doi: 10.1002/gepi.1370090506. [DOI] [PubMed] [Google Scholar]
  39. Olson J. M. Likelihood-based models for genetic linkage analysis using affected sib pairs. Hum Hered. 1997 Mar-Apr;47(2):110–120. doi: 10.1159/000154398. [DOI] [PubMed] [Google Scholar]
  40. Ott J. Linkage analysis and family classification under heterogeneity. Ann Hum Genet. 1983 Oct;47(Pt 4):311–320. doi: 10.1111/j.1469-1809.1983.tb01001.x. [DOI] [PubMed] [Google Scholar]
  41. Paterson A. D., Naimark D. M., Petronis A. The analysis of parental origin of alleles may detect susceptibility loci for complex disorders. Hum Hered. 1999 Jul;49(4):197–204. doi: 10.1159/000022875. [DOI] [PubMed] [Google Scholar]
  42. Risch N., Giuffra L. Model misspecification and multipoint linkage analysis. Hum Hered. 1992;42(1):77–92. doi: 10.1159/000154047. [DOI] [PubMed] [Google Scholar]
  43. Risch N. Segregation analysis incorporating linkage markers. I. Single-locus models with an application to type I diabetes. Am J Hum Genet. 1984 Mar;36(2):363–386. [PMC free article] [PubMed] [Google Scholar]
  44. SMITH C. A. TESTING FOR HETEROGENEITY OF RECOMBINATION FRACTION VALUES IN HUMAN GENETICS. Ann Hum Genet. 1963 Nov;27:175–182. doi: 10.1111/j.1469-1809.1963.tb00210.x. [DOI] [PubMed] [Google Scholar]
  45. Schork N. J., Boehnke M., Terwilliger J. D., Ott J. Two-trait-locus linkage analysis: a powerful strategy for mapping complex genetic traits. Am J Hum Genet. 1993 Nov;53(5):1127–1136. [PMC free article] [PubMed] [Google Scholar]
  46. Sham P. C., MacLean C. J., Kendler K. S. Two-locus versus one-locus lods for complex traits. Am J Hum Genet. 1994 Oct;55(4):855–858. [PMC free article] [PubMed] [Google Scholar]
  47. Sham P. C., MacLean C. J., Kendler K. S. Two-locus versus one-locus lods for complex traits. Am J Hum Genet. 1994 Oct;55(4):855–858. [PMC free article] [PubMed] [Google Scholar]
  48. Smalley S. L. Sex-specific recombination frequencies: a consequence of imprinting? Am J Hum Genet. 1993 Jan;52(1):210–212. [PMC free article] [PubMed] [Google Scholar]
  49. Strauch K., Fimmers R., Windemuth C., Hahn A., Wienker T. F., Baur M. P. Linkage analysis with adequate modeling of a parent-of-origin effect. Genet Epidemiol. 1999;17 (Suppl 1):S331–S336. doi: 10.1002/gepi.1370170756. [DOI] [PubMed] [Google Scholar]
  50. Vieland V. J., Greenberg D. A., Hodge S. E. Adequacy of single-locus approximations for linkage analyses of oligogenic traits: extension to multigenerational pedigree structures. Hum Hered. 1993 Nov-Dec;43(6):329–336. doi: 10.1159/000154155. [DOI] [PubMed] [Google Scholar]
  51. Vieland V. J., Hodge S. E., Greenberg D. A. Adequacy of single-locus approximations for linkage analyses of oligogenic traits. Genet Epidemiol. 1992;9(1):45–59. doi: 10.1002/gepi.1370090106. [DOI] [PubMed] [Google Scholar]
  52. Vieland V., Greenberg D. A., Hodge S. E., Ott J. Linkage analysis of two-locus diseases under single-locus and two-locus analysis models. Cytogenet Cell Genet. 1992;59(2-3):145–146. doi: 10.1159/000133229. [DOI] [PubMed] [Google Scholar]
  53. Weeks D. E., Lehner T., Squires-Wheeler E., Kaufmann C., Ott J. Measuring the inflation of the lod score due to its maximization over model parameter values in human linkage analysis. Genet Epidemiol. 1990;7(4):237–243. doi: 10.1002/gepi.1370070402. [DOI] [PubMed] [Google Scholar]
  54. Zinn-Justin A., Abel L. Two-locus developments of the weighted pairwise correlation method for linkage analysis. Genet Epidemiol. 1998;15(5):491–510. doi: 10.1002/(SICI)1098-2272(1998)15:5<491::AID-GEPI4>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES